Advertisement

Predictive Models Informed by Simulation, Measurement, and Surrogates

  • Ryan G. McClarren
Chapter

Abstract

In this chapter techniques for combining simulation and experiments through surrogate models are presented. We begin with the classic problem of using experimental data to fix parameters in a simulation. To do this properly, we require Markov Chain Monte Carlo (MCMC) sampling, and this method is discussed in Sect. 11.2. Section 11.3 using MCMC to estimate calibration parameters. The formalism of Kennedy and O’Hagan is then used to introduce a discrepancy function that contains the difference between simulation and experiment, and MCMC is used to estimate both the discrepancy and surrogate simultaneously. Finally, Sect. 11.5 shows how a hierarchy of fidelities can be used to make predictions.

Supplementary material

430401_1_En_11_MOESM1_ESM.zip (1.9 mb)
Chapter 11 (zip 1941 KB).

References

  1. Bayarri MJ, Berger JO, Cafeo J, Garcia-Donato G, Liu F, Palomo J, Parthasarathy RJ, Paulo R, Sacks J, Walsh D (2007) Computer model validation with functional output. Ann Stat 35(5):1874–1906MathSciNetCrossRefGoogle Scholar
  2. Cook AH (1965) The absolute determination of the acceleration due to gravity. Metrologia 1(3):84–114ADSCrossRefGoogle Scholar
  3. Denison DGT, Holmes CC, Mallick BK, Smith AFM (2002) Bayesian methods for nonlinear classification and regression. Wiley, ChichesterzbMATHGoogle Scholar
  4. Gilks W, Spiegelhalter D (1996) Markov chain Monte Carlo in practice. Chapman & Hall, LondonzbMATHGoogle Scholar
  5. Goh J (2014) Prediction and calibration using outputs from multiple computer simulators. PhD thesis, Simon Fraser UniversityGoogle Scholar
  6. Goh J, Bingham D, Holloway JP, Grosskopf MJ, Kuranz CC, Rutter E (2013) Prediction and computer model calibration using outputs from multifidelity simulators. Technometrics 55(4):501–512MathSciNetCrossRefGoogle Scholar
  7. Gramacy RB, Bingham D, Holloway JP, Grosskopf MJ, Kuranz CC, Rutter E, Trantham M, Drake RP et al (2015) Calibrating a large computer experiment simulating radiative shock hydrodynamics. Ann Appl Stat 9(3):1141–1168MathSciNetCrossRefGoogle Scholar
  8. Higdon D, Kennedy M, Cavendish JC, Cafeo JA, Ryne RD (2004) Combining field data and computer simulations for calibration and prediction. SIAM J Sci Comput 26(2):448MathSciNetCrossRefGoogle Scholar
  9. Holloway JP, Bingham D, Chou CC, Doss F, Drake RP, Fryxell B, Grosskopf M, van der Holst B, Mallick BK, McClarren R, Mukherjee A, Nair V, Powell KG, Ryu D, Sokolov I, Toth G, Zhang Z (2011) Predictive modeling of a radiative shock system. Reliab Eng Syst Saf 96(9):1184–1193CrossRefGoogle Scholar
  10. Karagiannis G, Lin G (2017) On the Bayesian calibration of computer model mixtures through experimental data, and the design of predictive models. J Comput Phys 342:139–160ADSMathSciNetCrossRefGoogle Scholar
  11. Kennedy MC, O’Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1):1–13MathSciNetCrossRefGoogle Scholar
  12. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092. https://doi.org/10.1063/1.1699114 ADSCrossRefGoogle Scholar
  13. Roberts GO, Gelman A, Gilks WR (1997) Weak convergence and optimal scaling of random walk metropolis algorithms. Ann Appl Probab 7(1):110–120MathSciNetCrossRefGoogle Scholar
  14. Tate DR (1968) Acceleration due to gravity at the national bureau of standards. J Res Natl Bur Stand Sect C Eng Instrum 72C(1):1CrossRefGoogle Scholar
  15. Zheng W, McClarren RG (2016) Emulation-based calibration for parameters in parameterized phonon spectrum of ZrHx in TRIGA reactor simulations. Nucl Sci Eng 183(1):78–95CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ryan G. McClarren
    • 1
  1. 1.Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations