Advertisement

Spatial Parallel Robots

  • Stefan Staicu
Chapter
Part of the Parallel Robots: Theory and Applications book series (PRTA)

Abstract

We have already seen that parallel structures have a number of advantages over serial manipulators such as higher payload since this is divided by several legs, has higher accuracy due to none cumulative joint errors, higher structural stiffness, since the load is usually carried by some links and, also, the location of motors are closed to the base. Due to these clear advantages, parallel robots have attracted many researchers and considerable efforts have been devoted to the kinematics and dynamics of these mechanisms. There is a great deal of scope opening up for possible applications of parallel robots in non-traditional field such as like surgical robots and rehabilitation robotics.

References

  1. 1.
    Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)Google Scholar
  2. 2.
    Clavel, R.: Delta: a fast robot with parallel geometry. In: Proceedings of 18th International Symposium on Industrial Robots, Sydney, pp. 91–100 (1988)Google Scholar
  3. 3.
    Tsai, L.-W., Stamper, R.: A parallel manipulator with only translational degrees of freedom. In: Proceedings of ASME Design Engineering Technical Conferences, Irvine, CA (1996)Google Scholar
  4. 4.
    Chablat, D., Wenger, P., Staicu, S.: Dynamics of the orthoglide parallel robot. UPB Sci. Bull. Ser. D: Mech. Eng. 71(3), 3–16 (2009)Google Scholar
  5. 5.
    Staicu, S.: Dynamics analysis of the Star parallel manipulator. Robot. Auton. Syst. 57(11), 1057–1064 (2009)CrossRefGoogle Scholar
  6. 6.
    Staicu, S.: Matrix modeling of inverse dynamics of spatial and planar parallel robots. Multibody Syst. Dyn. 27(2), 239–265 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, Y.-W., Wang, J., Wang, L.-P., Liu, X.-J.: Inverse dynamics and simulation of a 3-DOF spatial parallel manipulator. In: Proceedings of the IEEE International Conference on Robotics & Automation, ICRA’2003, Taipei, vol. 3, pp. 4092–4097 (2003)Google Scholar
  8. 8.
    Carricato, M., Parenti-Castelli, V.: Singularity-free fully-isotropic translational parallel mechanisms. Int. J. Robot. Res. 21(2), 161–164 (2002)CrossRefGoogle Scholar
  9. 9.
    Chablat, D., Wenger, P.: Architecture optimization of a 3-DOF parallel mechanism for machining applications: the Orthoglide. IEEE Trans. Robot. Autom. 19(3), 403–410 (2003)CrossRefGoogle Scholar
  10. 10.
    Ibrahim, O., Khalil, W.: Inverse and direct dynamic models of hybrid robots. Mech. Mach. Theory 45(4), 627–640 (2010)CrossRefGoogle Scholar
  11. 11.
    Chen, G., Yu, W., Li, Q., Wang, H.: Dynamic modeling and performance analysis of the 3-PRRU 1T2R parallel manipulator without parasitic motion. Nonlinear Dyn. 90(1), 339–353 (2017)CrossRefGoogle Scholar
  12. 12.
    Dasgupta, B., Mruthyunjaya, T.S.: A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory 33(8), 1135–1152 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Li, Y., Xu, Q.: Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism. Robotica 23(2), 219–229 (2005)CrossRefGoogle Scholar
  14. 14.
    Miller, K., Clavel, R.: The Lagrange-based model of Delta-4 robot dynamics. Robotersysteme 8, 49–54 (1992)Google Scholar
  15. 15.
    Xin, G., Deng, H., Zhong, G.: Closed-form dynamics of a 3-DOF spatial parallel manipulator by combining the lagrangian formulation with the virtual work principle. Nonlinear Dyn. 86(2), 1329–1347 (2016)CrossRefGoogle Scholar
  16. 16.
    Staicu, S., Zhang, D.: A novel dynamic modelling approach for parallel mechanisms analysis. Robot. Comput.-Integr. Manuf. 24(1), 167–172 (2008)CrossRefGoogle Scholar
  17. 17.
    Tsai, L.-W.: Solving the inverse dynamics of Stewart-Gough manipulator by the principle of virtual work. J. Mech. Des. 122(1), 3–9 (2000)CrossRefGoogle Scholar
  18. 18.
    Zhang, C.-D., Song, S.-M.: An efficient method for inverse dynamics of manipulators based on virtual work principle. J. Robot. Syst. 10(5), 605–627 (1993)CrossRefGoogle Scholar
  19. 19.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms. Springer, New York (2002)zbMATHGoogle Scholar
  20. 20.
    Gosselin, C., Angeles, J.: The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator. ASME J. Mech. Transm. Automat. Des. 111(2), 202–207 (1989)CrossRefGoogle Scholar
  21. 21.
    Staicu, S., Liu, X.-J., Wang, J.: Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dyn. 50(1–2), 1–12 (2007)CrossRefGoogle Scholar
  22. 22.
    Staicu, S.: Dynamics of the spherical 3-UPS/S parallel mechanism with prismatic actuators. Multibody Syst. Dyn. 22(2), 115–132 (2009)CrossRefGoogle Scholar
  23. 23.
    Wang, J., Gosselin, C.: A new approach for the dynamic analysis of parallel manipulators. Multibody Syst. Dyn. 2(3), 317–334 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Khalil, W., Ibrahim, O.: General solution for the dynamic modeling of parallel robots. J. Intell. Robot. Sys. 49(1), 19–37 (2007)CrossRefGoogle Scholar
  25. 25.
    Baron, L., Angeles, J.: The direct kinematics of parallel manipulators under joint-sensor redundancy. IEEE Trans. Robot. Autom. 16(1), 12–19 (2000)CrossRefGoogle Scholar
  26. 26.
    Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng., Part. I 180(15), 371–386 (1965)Google Scholar
  27. 27.
    Liu, X.-J., Jeong, J., Kim, J.: A three translational DOFs parallel cube-manipulator. Robotica 21(6), 645–653 (2003)CrossRefGoogle Scholar
  28. 28.
    Xi, F., Angelico, O., Sinatra, R.: Tripod dynamics and its inertia effects. J. Mech. Des. 127(1), 144–149 (2005)CrossRefGoogle Scholar
  29. 29.
    Li, Y., Staicu, S.: Inverse dynamics of a 3-PRC parallel kinematic machine. Nonlinear Dyn. 67(2), 1031–1041 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Cheng, G., Shan, X.: Dynamics analysis of a parallel hip-joint simulator with four degree of freedoms (3R1T). Nonlinear Dyn. 70(4), 2475–2486 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, Z., Zhang, N., Chai, X., Li, Q.: Kinematic/dynamic analysis and optimization of a 2-URR-RRU parallel manipulator. Nonlinear Dyn. 88(1), 503–519 (2017)CrossRefGoogle Scholar
  32. 32.
    Kalani, H., Rezaei, A., Akbarzadeh, A.: Improved general solution for the dynamic modeling of Gough-Stewart platform based on principle of virtual work. Nonlinear Dyn. 83(4), 2393–2418 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Geng, Z., Haynes, L.S., Lee, J.D., Carroll, R.L.: On the dynamic model and kinematic analysis of a class of Stewart platforms. Robot. Auton. Syst. 9(4), 237–254 (1992)CrossRefGoogle Scholar
  34. 34.
    Didrit, O., Petitot, M., Walter, E.: Guaranteed solution of direct kinematic problems for general configurations of parallel manipulator. IEEE Trans. Robot. Autom. 14(2), 259–266 (1998)CrossRefGoogle Scholar
  35. 35.
    Yuan, W., Tsai, M.: A novel approach for forward dynamic analysis of 3-PRS parallel manipulator with consideration of friction effect. Robot. Comput.-Integr. Manuf. 30(3), 315–325 (2014)CrossRefGoogle Scholar
  36. 36.
    Salinic, S.: Determination of joint reaction forces in a symbolic form in rigid multibody systems. Mech. Mach. Theory 46(11), 1796–1810 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MechanicsUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations