Advertisement

Dynamics of Constrained Robotic Systems

  • Stefan Staicu
Chapter
Part of the Parallel Robots: Theory and Applications book series (PRTA)

Abstract

Serial manipulators are mechanisms which consist of a series of single-DOF active revolute or prismatic joints connecting the fixed base to the end-effectors. These robots have good operating characteristics, such as a large workspace and high flexibility, but have some disadvantages, such as low precision, low stiffness and high vibrations and deflections.

References

  1. 1.
    Tsai, L.-W.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, New York (1999)Google Scholar
  2. 2.
    McCarthy, J.M.: Dual orthogonal matrix in manipulator kinematics. Int. J. Robot. Res. 5(2), 45–51 (1986)CrossRefGoogle Scholar
  3. 3.
    Staicu, S.: Mecanica Teoretica. Edit. Didactica & Pedagogica, Bucharest (1998)Google Scholar
  4. 4.
    Staicu, S., Zhang, D.: A novel dynamic modelling approach for parallel mechanisms analysis. Robot. Comput.-Integr. Manuf. 24(1), 167–172 (2008)CrossRefGoogle Scholar
  5. 5.
    Staicu, S.: Dynamics analysis of the star parallel manipulator. Robot. Auton. Syst. 57(11), 1057–1064 (2009)CrossRefGoogle Scholar
  6. 6.
    Dasgupta, B., Mruthyunjaya, T.S.: A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory 33(8), 1135–1152 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guegan, S., Khalil, W., Chablat, D., Wenger, P.: Modélisation dynamique d’un robot parallèle à 3-DDL: l’Orthoglide. In: Proceedings of Conférence Internationale Francophone d’Automatique, Nantes (2002)Google Scholar
  8. 8.
    Li, Y., Xu, Q.: Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism. Robotica 23(2), 219–229 (2005)CrossRefGoogle Scholar
  9. 9.
    Zanganeh, R., Sinatra, R., Angeles, J.: Kinematics and dynamics of a six-degrees-of-freedom parallel manipulator with revolute legs. Robotica 15(4), 385–394 (1997)CrossRefGoogle Scholar
  10. 10.
    Miller, K., Clavel, R.: The lagrange-based model of Delta-4 robot dynamics. Robotersysteme 8, 49–54 (1992)Google Scholar
  11. 11.
    Xin, G., Deng, H., Zhong, G.: Closed-form dynamics of a 3-DOF spatial parallel manipulator by combining the lagrangian formulation with the virtual work principle. Nonlinear Dyn. 86(2), 1329–1347 (2016)CrossRefGoogle Scholar
  12. 12.
    Tsai, L.-W.: Solving the inverse dynamics of Stewart-Gough manipulator by the principle of virtual work. J. Mech. Des. 122(1), 3–9 (2000)CrossRefGoogle Scholar
  13. 13.
    Zhang, C.-D., Song, S.-M.: An efficient method for inverse dynamics of manipulators based on virtual work principle. J. Robot. Syst. 10(5), 605–627 (1993)CrossRefGoogle Scholar
  14. 14.
    Li, Y., Staicu, S.: Inverse dynamics of a 3-PRC parallel kinematic machine. Nonlinear Dyn. 67(2), 1031–1041 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Staicu, S., Liu, X.-J., Wang, J.: Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dyn. 50(1–2), 1–12 (2007)CrossRefGoogle Scholar
  16. 16.
    Khalil, W., Ibrahim, O.: General solution for the dynamic modeling of parallel robots. J. Intell. Robot. Syst. 49(1), 19–37 (2007)CrossRefGoogle Scholar
  17. 17.
    Tsai, L-W., Stamper, R.: A parallel manipulator with only translational degrees of freedom. In: Proceedings of ASME Design Engineering Technical Conferences, Irvine, CA (1996)Google Scholar
  18. 18.
    Voinea, R., Stroe, I., Predoi, M.: Technical Mechanics. Edit. Politehnica Press, Bucharest (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MechanicsUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations