Advertisement

Physical Foundations of Landauer’s Principle

  • Michael P. Frank
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11106)

Abstract

We review the physical foundations of Landauer’s Principle, which relates the loss of information from a computational process to an increase in thermodynamic entropy. Despite the long history of the Principle, its fundamental rationale and proper interpretation remain frequently misunderstood. Contrary to some misinterpretations of the Principle, the mere transfer of entropy between computational and non-computational subsystems can occur in a thermodynamically reversible way without increasing total entropy. However, Landauer’s Principle is not about general entropy transfers; rather, it more specifically concerns the ejection of (all or part of) some correlated information from a controlled, digital form (e.g., a computed bit) to an uncontrolled, non-computational form, i.e., as part of a thermal environment. Any uncontrolled thermal system will, by definition, continually re-randomize the physical information in its thermal state, from our perspective as observers who cannot predict the exact dynamical evolution of the microstates of such environments. Thus, any correlations involving information that is ejected into and subsequently thermalized by the environment will be lost from our perspective, resulting directly in an irreversible increase in thermodynamic entropy. Avoiding the ejection and thermalization of correlated computational information motivates the reversible computing paradigm, although the requirements for computations to be thermodynamically reversible are less restrictive than frequently described, particularly in the case of stochastic computational operations. There are interesting possibilities for the design of computational processes that utilize stochastic, many-to-one computational operations while nevertheless avoiding net entropy increase that remain to be fully explored.

Keywords

Information theory Statistical physics Thermodynamics of computation Landauer’s Principle Reversible computing 

References

  1. 1.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961).  https://doi.org/10.1147/rd.53.0183MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Planck, M.: Ueber das Gesetz der Energieverteilung im normalspectrum. Annalen der Physik 309(3), 553–563 (1901)CrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973).  https://doi.org/10.1147/rd.176.0525MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lecerf, Y.: Machines de Turing réversibles–Récursive insolubilité en \(n \in \rm N\) de l’equation \(u=\theta ^{n}u\), où \(\theta \) est un \(\ll \) isomorphisme de codes \(\gg \). Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences 257, 2597–2600 (1963)Google Scholar
  5. 5.
    Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483(7388), 187–190 (2012).  https://doi.org/10.1038/nature10872CrossRefGoogle Scholar
  6. 6.
    Orlov, A.O., Lent, C.S., Thorpe, C.C., Boechler, G.P., Snider, G.L.: Experimental test of Landauer’s Principle at the sub-\(k_{{\rm BT}}\) level. Jpn. J. Appl. Phys. 51(6S), 06FE10 (2012).  https://doi.org/10.1143/JJAP.51.06FE10CrossRefGoogle Scholar
  7. 7.
    Jun, Y., Gavrilov, M., Bechhoefer, J.: High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 113(19), 190601 (2014).  https://doi.org/10.1103/PhysRevLett.113.190601CrossRefGoogle Scholar
  8. 8.
    Yan, L.L., et al.: Single-atom demonstration of the quantum Landauer principle. Phys. Rev. Lett. 120(21), 210601 (2018).  https://doi.org/10.1103/PhysRevLett.120.210601CrossRefGoogle Scholar
  9. 9.
    Frank, M.P.: Approaching the physical limits of computing. In: Proceedings 35th International Symposium on Multiple-Valued Logic (ISMVL 2005), Calgary, Canada, May 2005, pp. 168–185. IEEE (2005).  https://doi.org/10.1109/ISMVL.2005.9
  10. 10.
    Frank, M.P., DeBenedictis, E.P.: A novel operational paradigm for thermodynamically reversible logic: adiabatic transformation of chaotic nonlinear dynamical circuits. In: IEEE International Conference on Rebooting Computing (ICRC), San Diego, CA, October 2016. IEEE (2016).  https://doi.org/10.1109/ICRC.2016.7738679
  11. 11.
    Frank, M.P.: Foundations of generalized reversible computing. In: Phillips, I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 19–34. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59936-6_2CrossRefGoogle Scholar
  12. 12.
    Frank, M.P.: Foundations of generalized reversible computing. Extended author’s preprint of [11], https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/grc-rc17-preprint2.pdf. Accessed 6 June 2018
  13. 13.
    Frank, M.P.: Generalized reversible computing. ArXiv preprint arXiv:1806.10183 [cs.ET] (2018)
  14. 14.
    Frank, M.P.: Chaotic logic. In: Presentation, 2016 IEEE International Conference on Rebooting Computing (ICRC), San Diego, CA, October 2016. https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/Frank_ICRC2016_ChaoticLo-gic_presUUR+notes.pdf. Accessed 6 June 2018
  15. 15.
    Likharev, K.: Dynamics of some single flux quantum devices: I. Parametric quantron. IEEE Trans. Magn. 13(1), 242–244 (1977).  https://doi.org/10.1109/TMAG.1977.1059351CrossRefGoogle Scholar
  16. 16.
    Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982).  https://doi.org/10.1007/BF01857727MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Drexler, K.E.: Nanosystems: Molecular Machinery, Manufacturing, and Computation. Wiley, New York (1992)Google Scholar
  18. 18.
    Younis, S.G., Knight Jr., T.F.: Practical implementation of charge recovering asymptotically zero power CMOS. In: Borriello, G., Ebeling, C. (eds.) Research in Integrated Systems: Proceedings of the 1993 Symposium, Seattle, WA, February 1993, pp. 234–250. MIT Press (1993)Google Scholar
  19. 19.
    Frank, M.P.: Generalizations of the reversible computing paradigm. In: Presentation, Workshop on “Thermodynamics and Computation: Towards a New Synthesis,” Santa Fe Institute, August 2017. https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/SFI-talk-final2_ho2up.pdf. Accessed 6 June 2018
  20. 20.
    Frank, M.P.: Generalized reversible computing and the unconventional computing landscape. In: Presentation, Computer Systems Colloquium, Department of EE, Stanford University, October 2017. https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/Stanford-CS-colloq_v2_ho2up.pdf (slides), https://www.youtube.com/watch?v=IQZ_bQbxSXk (video of presentation). Accessed 6 June 2018
  21. 21.
    Frank, M.P.: The indefinite logarithm, logarithmic units, and the nature of entropy. ArXiv preprint arXiv:physics/0506128 (2005)
  22. 22.
    Frank, M.P.: The physical limits of computing. Comput. Sci. Eng. 4(3), 16–26 (2002).  https://doi.org/10.1109/5992.998637CrossRefGoogle Scholar
  23. 23.
    Clausius, R.: On the motive power of heat, and on the laws which can be deduced from it for the theory of heat. Poggendorff’s Annalen der Physick, LXXIX (1850)Google Scholar
  24. 24.
    Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte Akademie der Wissenschaften 66, 275–370 (1872)zbMATHGoogle Scholar
  25. 25.
    Von Neumann, J.: Thermodynamik quantenmechanischer Gesamtheiten [Thermodynamics of Quantum Mechanical Quantities]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 102, 273–291 (1927)zbMATHGoogle Scholar
  26. 26.
    Von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Julius Springer, Heidelberg (1932)zbMATHGoogle Scholar
  27. 27.
    Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)zbMATHGoogle Scholar
  28. 28.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–424 and 623–657 (1948).  https://doi.org/10.1145/584091.584093
  29. 29.
    Shannon, C.E.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)zbMATHGoogle Scholar
  30. 30.
    Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Harada, Y., Goto, E., Miyamoto, N.: Quantum flux parametron. In: 1987 International Electron Devices Meeting, Washington, DC, 6–9 December 1987. IEEE (1987).  https://doi.org/10.1109/IEDM.1987.191439
  32. 32.
    Hosoya, M., et al.: Quantum flux parametron–A single quantum flux device for Josephson supercomputer. IEEE Trans. Appl. Supercond. 1(2), 77–89 (1991).  https://doi.org/10.1109/77.84613CrossRefGoogle Scholar
  33. 33.
    De Haas, W.J., Wiersma, E.C., Kramers, H.A.: Experiments on adiabatic cooling of paramagnetic salts in magnetic fields. Physica 1(1–6), 1–13 (1934).  https://doi.org/10.1016/S0031-8914(34)90002-1CrossRefGoogle Scholar
  34. 34.
    Kunzler, J.E., Walker, L.R., Galt, J.K.: Adiabatic demagnetization and specific heat in ferrimagnets. Phys. Rev. 119(5), 1609 (1960).  https://doi.org/10.1103/PhysRev.119.1609CrossRefGoogle Scholar
  35. 35.
    Pecharsky, V.K., Gschneidner Jr., K.A.: Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200(1–3), 44–56 (1999).  https://doi.org/10.1016/S0304-8853(99)00397-2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Center for Computing ResearchSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations