Coupled Fluid-Particle Modeling of Submerged Granular Collapse

  • L. Jing
  • G. C. Yang
  • C. Y. KwokEmail author
  • Y. D. Sobral
Conference paper
Part of the Trends in Mathematics book series (TM)


We perform coupled fluid-particle modeling to understand the collapse of underwater granular columns in comparison with dry cases, with a variety of initial aspect ratios. Our results show that the submerged collapse leads to a shorter runout and thicker front due to the resistance provided by the ambient fluid. An interesting process of vortex formation is observed in the fluid as particles turn into a shear flow. At high aspect ratios, the vortex in water can significantly modify the surface morphology of the final deposit due to the fluid inertia developed on the surface of the granular layer.


CFD-DEM Granular collapse Submerged granular flow 



The work was supported by Research Grants Council of Hong Kong (under Grant No. RGC/GRF 17203614), and FAP-DF, Brazil. The research was conducted in part using the research computing facilities and advisory services offered by Information Technology Services, the University of Hong Kong.


  1. 1.
    Balmforth, N.J., Kerswell, R.R.: Granular collapse in two dimensions. J. Fluid Mech. 538, 399 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lajeunesse, E., Monnier, J.B., Homsy, G.M.: Granular slumping on a horizontal surface. Phys. Fluids 17, 103302 (2005)CrossRefGoogle Scholar
  3. 3.
    Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Collapses of two-dimensional granular columns. Phys. Rev. E 72, 041301 (2005)CrossRefGoogle Scholar
  4. 4.
    Staron, L., Hinch, E.J.: The spreading of a granular mass: role of grain properties and initial conditions. Granul. Matter 9, 205–217 (2007)CrossRefGoogle Scholar
  5. 5.
    Girolami, L., Hergault, V., Vinay, G., Wachs, A.: A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments. Granul. Matter 14, 381–392 (2012)CrossRefGoogle Scholar
  6. 6.
    Pailha, M., Pouliquen, O.: A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633, 115 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wang, C., Wang, Y., Peng, C., Meng, X.: Two-fluid smoothed particle hydrodynamics simulation of submerged granular column collapse. Mech. Res. Commun. 79, 15–23 (2017)CrossRefGoogle Scholar
  8. 8.
    Topin, V., Monerie, Y., Perales, F., Radja, F.: Collapse dynamics and runout of dense granular materials in a fluid. Phys. Rev. Lett. 109, 188001 (2012)CrossRefGoogle Scholar
  9. 9.
    Mutabaruka, P., Delenne, J.-Y., Soga, K., Radjai, F.: Initiation of immersed granular avalanches. Phys. Rev. E 89, 052203 (2014)CrossRefGoogle Scholar
  10. 10.
    Iverson, R.M., Reid, M.E., Iverson, N.R., LaHusen, R.G., Logan, M., Mann, J.E., Brien, D.L.: Acute sensitivity of landslide rates to initial soil porosity. Science 290, 513–516 (2000)CrossRefGoogle Scholar
  11. 11.
    Pailha, M., Nicolas, M., Pouliquen, O.: Initiation of underwater granular avalanches: influence of the initial volume fraction. Phys. Fluids 20, 111701 (2008)CrossRefGoogle Scholar
  12. 12.
    Rondon, L., Pouliquen, O., Aussillous, P.: Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23, 073301 (2011)CrossRefGoogle Scholar
  13. 13.
    Courrech du Pont, S., Gondret, P., Perrin, B., Rabaud, M.: Granular avalanches in fluids. Phys. Rev. Lett. 90, 044301 (2003)Google Scholar
  14. 14.
    Cassar, C., Nicolas, M., Pouliquen, O.: Submarine granular flows down inclined planes. Phys. Fluids 17, 103301 (2005)CrossRefGoogle Scholar
  15. 15.
    Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFDDEM. Prog. Comput. Fluid Dyn. Int. J. 12, 140–152 (2012)CrossRefGoogle Scholar
  16. 16.
    Jing, L., Kwok, C.Y., Leung, Y.F., & Sobral, Y.D.: Extended CFD-DEM for free-surface flow with multi-size granules. Int. J. Numer. Anal. Methods Geomech. 40, 62–79 (2016)CrossRefGoogle Scholar
  17. 17.
    Anderson, T.B., Jackson, R.: Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 6, 527–539 (1967)CrossRefGoogle Scholar
  18. 18.
    Tsuji, Y., Kawaguchi, T., Tanaka, T.: Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77, 79–87 (1993)CrossRefGoogle Scholar
  19. 19.
    Silbert, L.E., Erta, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302 (2001)CrossRefGoogle Scholar
  20. 20.
    Di Felice, R.: The voidage function for fluid-particle interaction systems. Int. J. Multiphase Flow 20, 153–159 (1994)CrossRefGoogle Scholar
  21. 21.
    Larrieu, E., Staron, L., Hinch, E.J.: Raining into shallow water as a description of the collapse of a column of grains. J. Fluid Mech. 554, 259 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • L. Jing
    • 1
  • G. C. Yang
    • 1
  • C. Y. Kwok
    • 1
    Email author
  • Y. D. Sobral
    • 2
  1. 1.Department of Civil EngineeringThe University of Hong KongPokfulamHong Kong
  2. 2.Departamento de MatemáticaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations