Connection Between the Temporomandibular Joint and Temporal Bone

  • Kaan Orhan
  • Franciszek Burdan


The temporal bone is a key structure not only for the temporomandibular joint (TMJ) and brain, but also for the ear, since it surrounds the internal, middle, and – partially – the external ear. Owing to their common origin and development, as well as nearby location, the temporal bone and TMJ may modify each other and share similar pathologies, including congenital malformations, traumatic and inflammatory changes, and neoplasms. Temporal air spaces are potential paths for the spread of various pathological processes. Tumors of the mastoid process and ear may extend into the TMJ, while otitis or mastoiditis may involve the TMJ and can even result in ankylosis. Moreover, fractures of the base of the skull frequently extend through the pneumatized spaces of the temporal bone and may release air into the glenoid fossa. In this chapter, we aim to show the possible connections between the TMJ and temporal bone.


TMJ Temporal bone Magnetic resonance imaging Tumors Infections 


  1. 1.
    Ikari Y, Katori Y, Ohtsuka A, Rodríguez-Vázquez JF, Abe H, Kawase T, Murakami G, Abe S. Fetal development and variations in the cartilages surrounding the human external acoustic meatus. Ann Anat. 2013;195:128–36.CrossRefGoogle Scholar
  2. 2.
    McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM. Development and tissue origins of the mammalian cranial base. Dev Biol. 2008;322:121–32.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ricciardelli EJ. Embryology and anatomy of the cranial base. Clin Plast Surg. 1995;22:361–72.Google Scholar
  4. 4.
    Scheuer L, Black S. The head, neck and dentition. In: Cunningham C, Scheuer L, Black S, editors. Developmental juvenile osteology. San Diego: Elsevier Academic Press; 2000. p. 36–169.CrossRefGoogle Scholar
  5. 5.
    Skarzyński H, Kukwa A, Jegliński W, Skarzyńska B. Degree of middle ear malformation in developmental defects of the I and II branchial arches. Otolaryngol Pol. 1990;44:297–301.Google Scholar
  6. 6.
    Whyte J, Cisneros A, Yus C, Fraile J, Obón J, Vera A. Tympanic ossicles and pharyngeal arches. Anat Histol Embryol. 2009;38:31–3.CrossRefGoogle Scholar
  7. 7.
    Cisneros Gimeno AI, Whyte Orozco JR, Obón Nogues JA, Yus Gotor C, Crovetto De La Torre MA, Whyte Orozco A. Contribution to morphological knowledge of the development of the human incudomalleal joint. Acta Otolaryngol. 2009;129:1380–7.CrossRefGoogle Scholar
  8. 8.
    Hanson JR, Anson BJ, Strickland EM. Branchial sources of the auditory ossicles in man. II. Observations of embryonic stages from 7 mm. to 28 mm. (CR length). Arch Otolaryngol. 1962;76:200–15.CrossRefGoogle Scholar
  9. 9.
    Hanson JR, Anson BJ. Development of the malleus of the human ear. Illustrated in atlas series. Q Bull Northwest Univ Med Sch. 1962;36:119–37.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Krmpotić-Nemanić J, Padovan I, Vinter I, Jalsovec D. Prenatal and postnatal development of the tympanic portion of the temporal bone. Ann Anat. 1999;181:593–5.CrossRefGoogle Scholar
  11. 11.
    Tóth M, Medvegy T, Moser G, Patonay L. Development of the protympanum. Ann Anat. 2006;188:267–73.CrossRefGoogle Scholar
  12. 12.
    Bach-Petersen S, Kjaer I. Ossification of lateral components in the human prenatal cranial base. J Craniofac Genet Dev Biol. 1993;13:76–82.Google Scholar
  13. 13.
    Eby TL, Nadol JB Jr. Postnatal growth of the human temporal bone. Implications for cochlear implants in children. Ann Otol Rhinol Laryngol. 1986;95(4 Pt1):356–64.CrossRefGoogle Scholar
  14. 14.
    Bochenek A, Raicher M. Human Anatomy. Warsw: PZWL; 2007.Google Scholar
  15. 15.
    Kurlej WL, Gworys B, Burdan F. Anatomy for dentists. Elsevier Urban & Partner: Wroclaw; 2011.Google Scholar
  16. 16.
    Standring S. Gray’s Anatomy, the anatomical basis of clinical practice. 40th ed. Madison: Elsevier; 2008a. p. 615–34.Google Scholar
  17. 17.
    Standring S. Head and neck. In: Standring S, editor. Gray’s Anatomy: the anatomical basis of clinical practice, expert consult. 40th ed. London: Elsevier Churchill Livingstone; 2008b. p. 395–705.Google Scholar
  18. 18.
    Jufas N, Marchioni D, Tarabichi M, Patel N. Endoscopic anatomy of the protympanum. Otolaryngol Clin N Am. 2016;49:1107–19.CrossRefGoogle Scholar
  19. 19.
    Orhan K, Delilbasi C, Cebeci I, Paksoy C. Prevalence and variations of pneumatized articular eminence: a study from Turkey. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005a;99(3):349–54.CrossRefGoogle Scholar
  20. 20.
    Orhan K, Delilbasi C, Orhan AI. Radiographic evaluation of pneumatized articular eminence in a group of Turkish children. Dentomaxillofac Radiol. 2006;35(5):365–70.CrossRefGoogle Scholar
  21. 21.
    Orhan K, Oz U, Orhan AI, Ulker AE, Delilbasi C, Akcam O. Investigation of pneumatized articular eminence in orthodontic malocclusions. Orthod Craniofac Res. 2010;13(1):56–60.CrossRefGoogle Scholar
  22. 22.
    Virapongse C, Sarwar M, Bhimani S, Sasaki C, Shapiro R. Computed tomography of temporal bone pneumatization: 1. normal pattern morphology. AJNR. 1995;6:551–9.Google Scholar
  23. 23.
    Tremble GJ. Pneumatization of the temporal bone. Arch Odontolaryngol. 1934;9:172.CrossRefGoogle Scholar
  24. 24.
    Allam AF. Pneumatization of the temporal bone. Ann Otol Rhinol Laryngol. 1969;78:48–64.CrossRefGoogle Scholar
  25. 25.
    Tyndall DA, Matteson RS. Radiographic appearance and population distribution of the pneumatized articular eminence of the temporal bone. J Oral Maxillo Fac Surg. 1985;43:493–7.CrossRefGoogle Scholar
  26. 26.
    Hollinshead WH. Anatomy for surgeons: the head and neck. 2nd ed. New York: Harper and Row; 1968.Google Scholar
  27. 27.
    Hofmann T, Friedrich RE, Wedl JS, Schmelzle R. Pneumatization of the zygomatic arch on pantomography. Mund Kiefer Gesichtschir. 2001;5:173–9.CrossRefGoogle Scholar
  28. 28.
    Thomson HG. Septic arthritis of the temporomandibular joint complicating otitis externa. J Laryngol Otol. 1989;103:319–21.CrossRefGoogle Scholar
  29. 29.
    Youniss S. The relationship between craniomandibular disorders and otitis media in children. Cranio. 1991;9:169–73.CrossRefGoogle Scholar
  30. 30.
    Delilbasi C, Orhan K, Icen M, Aksoy S, Horasan S, Kenan KS. Evaluation of articular eminence pneumatization using cone beam computed tomography. Minerva Stomatol. 2013 Oct;62(10):349–54.Google Scholar
  31. 31.
    Wong K, Mung LP. Magnetic resonance imaging of the temporomandibular joint: diagnostic difficulty caused by extensive pneumatization of the mastoid air cells. Skelet Radiol. 1999;28:577–80.CrossRefGoogle Scholar
  32. 32.
    Orhan K, Nishiyama H, Tadashi S, Shumei M, Furukawa S. MR of 2270 TMJs: prevalence of radiographic presence of otomastoiditis in temporomandibular joint disorders. Eur J Radiol. 2005b;55(1):102–7.CrossRefGoogle Scholar
  33. 33.
    Akbulut N, Kursun S, Aksoy S, Kurt H, Orhan K. Evaluation of foramen tympanicum using cone-beam computed tomography in orthodontic malocclusions. J Craniofac Surg. 2014;25(2):e105–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lacout A, Marsot-Dupuch K, Smoker WR, Lasjaunias P. Foramen tympanicum, or foramen of Huschke: pathologic cases and anatomic CT study. Am J Neuroradiol. 2005;26(6):1317–23.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Fusconi M, Benfari G, Franco M, Deriu D, Dambrosio F, Antonio G, et al. Foramen of Huschke: case report and experimental procedure for diagnosis of spontaneous salivary fistula. J Oral Maxillofac Surg. 2009;67:1747–51.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang RG, Bingham B, Hawke M, Kwok P, Li JR. Persistence of the foramen of Huschke in the adult: an osteological study. J Otolaryngol. 1991;20:251–3.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Nakasato T, Nakayama T, Kikuchi K, Ehara S, Ohtsuka H, Fukuda K, Sato H. Spontaneous temporomandibular joint herniation into the external auditory canal through a persistent foramen tympanicum (Huschke): radiographic features. J Comput Assist Tomogr. 2013;37(1):111–3.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Prowse SJ, Kelly G, Agada F. Temporomandibular joint herniation and the foramen of Huschke: an unusual external auditory canal mass. J Laryngol Otol. 2011;125(12):1279–81.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dingle AF. Fistula between the external auditory canal and the temporomandibular joint: a rare complication of otitis externa. J Laryngol Otol. 1992;106:994–5.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Faerber TH, Ennis RL, Allen GA. Temporomandibular joint ankylosis following mastoiditis: report of a case. J Oral Maxillofac Surg. 1990;48:866–70.CrossRefGoogle Scholar
  41. 41.
    Applebaum EL, Berg LF, Kumar A. Otologic complications following temporomandibular joint arthroscopy. Ann Otol Rhinol Laryngol. 1988;97:675–9.CrossRefGoogle Scholar
  42. 42.
    Herzog S, Fiese R. Persistent foramen of Huschke: possible risk factor for otologic complications after arthroscopy of the temporomandibular joint. Oral Surg Oral Med Oral Pathol. 1989;68:267–70.CrossRefGoogle Scholar
  43. 43.
    Tozoglu U, Caglayan F, Harorli A. Foramen tympanicum or foramen of Huschke: anatomical cone beam CT study. Dentomaxillofac Radiol. 2012;41(4):294–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kalender A, Orhan K, Aksoy U. Evaluation of the mental foramen and accessory mental foramen in Turkish patients using cone-beam computed tomography images reconstructed from a volumetric rendering program. Clin Anat. 2012;25(5):584–92.CrossRefGoogle Scholar
  45. 45.
    Furstman L. The early development of the human temporomandibular joint. Am J Orthod. 1963;49:672–82.CrossRefGoogle Scholar
  46. 46.
    Perry HT, Xu Y, Forbes DP. The embryology of the temporomandibular joint: a study. Cranio. 1985;3:125–32.CrossRefGoogle Scholar
  47. 47.
    Pinto OF. A new structure related to the temporomandibular joint and middle ear. J Prosthet Dent. 1962;12:95–103.CrossRefGoogle Scholar
  48. 48.
    Toledo FJL, Zorzetto NL, Caldas NJA. Structures and relationships of the temporomandibular joint. J Oral Maxillofac Surg. 1985;43:565–9.CrossRefGoogle Scholar
  49. 49.
    Wong GB, Weinberg S, Symington JM. Morphology of the developing articular disc of the human temporomandibular joint. J Oral Maxillofac Surg. 1985;43(8):565–9.CrossRefGoogle Scholar
  50. 50.
    Yuodelis RA. The morphogenesis of the human temporomandibular joint and its associated structures. J Dent Res. 1966;45:182–91.CrossRefGoogle Scholar
  51. 51.
    Kurt H, Orhan K, Aksoy S, Kursun S, Akbulut N, Bilecenoglu B. Evaluation of the superior semicircular canal morphology using cone beam computed tomography: a possible correlation for temporomandibular joint symptoms. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117:280–8.CrossRefGoogle Scholar
  52. 52.
    Sencimen M, Yalçin B, Doğan N, Varol A, Okçu KM, Ozan H, Aydintuğ YS. Anatomical and functional aspects of ligaments between the malleus and the temporomandibular joint. Int J Oral Maxillofac Surg. 2008;37:943–7.CrossRefGoogle Scholar
  53. 53.
  54. 54.
    Monteiro JC, Ennes JP, Zorzatto JR. Ossification of the petrotympanic fissure: morphological analysis and clinical implications. Cranio. 2011;29(4):284–90.CrossRefGoogle Scholar
  55. 55.
    Arai H, Sato I. Anatomical study of the human discomallear ligament using cone beam computed tomography imaging and morphological observations. Okajimas Folia Anat Jpn. 2011;88:89–101.CrossRefGoogle Scholar
  56. 56.
    Sato I, Arai H, Asaumi R, Imura K, Kawai T, Yosue T. Classifications of tunnel-like structure of human petrotympanic fissure by cone beam CT. Surg Radiol Anat. 2008;30:323–6.CrossRefGoogle Scholar
  57. 57.
    Kim HJ, Jung HS, Kwak HH, et al. The discomallear ligament and the anterior ligament of malleus: an anatomic study in human adults and fetuses. Surg Radiol Anat. 2004;26:39–45.CrossRefGoogle Scholar
  58. 58.
    Barghan S, Tetradis S, Mallya SM. Application of cone beam computed tomography for assessment of the temporomandibular joints. Aust Dent J. 2012;57:109–18.CrossRefGoogle Scholar
  59. 59.
    Curtin HD, Gupta R, Bergeron TR. Embryology, anatomy, and imaging of temporal bone. In: Som PM, Curtin HD, editors. Head and neck imaging. 5th ed. St. Louis: Mosby; 2011. p. 1072.Google Scholar
  60. 60.
    Dieterich M, Brandt T. Vestibular system: anatomy and functional magnetic resonance imaging. Neuroimaging Clin N Am. 2001;11(2):263–73.Google Scholar
  61. 61.
    Minor LB. Clinical manifestations of superior semicircular canal dehiscence. Laryngoscope. 2005;115:1717–27.CrossRefGoogle Scholar
  62. 62.
    Minor LB, Solomon D, Zinreich JS, Zee DS. Sound- and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal. Arch Otolaryngol Head Neck Surg. 1998;124:249–58.CrossRefGoogle Scholar
  63. 63.
    Romo LV, Casselman JW, Robson CD. Congenital anomalies of the temporal bone. In: Som PM, Curtin HD, editors. Head and neck imaging. 5th ed. St. Louis: Mosby; 2011. p. 1113.Google Scholar
  64. 64.
    Lee JY, Shin KJ, Kim JN, Yoo JY, Song WC, Koh KS. A morphometric study of the semicircular canals using micro-CT images in three-dimensional reconstruction. Anat Rec. 2013;296(5):834–9.CrossRefGoogle Scholar
  65. 65.
    Ozdil NY, Temporal kemiğin ve komşuluklarinin konik işinli bilgisayarli tomografide farkli fov ve voksel büyüklüklerinde anatomik ve morfolojik retrospektif değerlendirilmesi, Ankara University, MSc (Specialization Thesis), 2016. In Turkish.Google Scholar
  66. 66.
    Lane JI, Witte RJ. Temporal Bone: An Imaging Atlas. Berlin: Springer; 2010.CrossRefGoogle Scholar
  67. 67.
    Cisneros AI, Whyte J, Martínez C, Gracia-Tello B, Whyte A, Obón J, Crovetto R, Crovetto MA. Radiological patterns of the posterior semicircular canal. Surg Radiol Anat. 2013;35:61.CrossRefGoogle Scholar
  68. 68.
    Stimmer H, Hamann KF, Zeiter S, Naumann A, Rummeny EJ. Semicircular canal dehiscence in HR multislice computed tomography: distribution, frequency, and clinical relevance. Eur Arch Otorhinolaryngol. 2012;269:475–80.CrossRefGoogle Scholar
  69. 69.
    Cloutier JF, Belair M, Saliba I. Superior semicircular canal dehiscence: positive predictive value of high-resolution CT scanning. Eur Arch Otorhinolaryngol. 2008;265:1455–60.CrossRefGoogle Scholar
  70. 70.
    Siqueira SM, Whiting BR, Shimony JS, et al. Accuracy of computed tomography detection of superior canal dehiscence. Otol Neurotol. 2011;32:1500–5.CrossRefGoogle Scholar
  71. 71.
    De la Cruz A, Linthicum FH Jr, Luxford WM. Congenital atresia of the external auditory canal. Laryngoscope. 1985;95:421–7.Google Scholar
  72. 72.
    De la Cruz A, Teufert KB. Congenital aural atresia surgery: long-term results. Otolaryngol Head Neck Surg. 2003;129:121–7.Google Scholar
  73. 73.
    Kos M. Head and neck congenital malformations. Act Clin Croat. 2004;43:195–201.Google Scholar
  74. 74.
    Nargozian C. The airway in patients with craniofacial abnormalities. Paediatr Anaesth. 2004;14:53–9.CrossRefGoogle Scholar
  75. 75.
    Swartz JD, Faerber EN. Congenital malformations of the external and middle ear: high-resolution CT findings of surgical import. AJR Am J Roentgenol. 1985;144:501–6.CrossRefGoogle Scholar
  76. 76.
    Donaldson I, Snow DG. A five year follow up of incus transposition in relation to the first stage tympanoplasty technique. J Laryngol Otol. 1992;106:607–9.CrossRefGoogle Scholar
  77. 77.
    Lannigan FJ, O’Higgins P, Oxnard CE, McPhie P. Age-related bone resorption in the normal incus: a case of maladaptive remodelling? J Anat. 1995;186(Pt3):651–5.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Hagiwara M, Shaikh JA, Fang Y, Fatterpekar G, Roehm PC. Prevalence of radiographic semicircular canal dehiscence in very young children: an evaluation using high-resolution computed tomography of the temporal bones. Pediatr Radiol. 2012;42:1456–64.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Nadgir RN, Ozonoff A, Devaiah AK, Halderman AA, Sakai O. Superior semicircular canal dehiscence: congenital or acquired condition? AJNR Am J Neuroradiol. 2011;32(5):947–9.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Boeddinghaus R. Re: Measurement of defect angle in superior semicircular canal dehiscence. Clin Radiol. 2010;65(10):853–4.CrossRefGoogle Scholar
  81. 81.
    Crovetto de la Torre MA, Whyte Orozco J, Cisneros Gimeno AI, et al. Superior semicircular canal dehiscence syndrome. Embryological and surgical consideration. Acta Otorrinolaringol Esp. 2005;56:6–11.CrossRefGoogle Scholar
  82. 82.
    Lip G, Nichols DM. Measurement of defect angle in superior semicircular canal dehiscence. Clin Radiol. 2009;64(12):1210–3.CrossRefGoogle Scholar
  83. 83.
    Mondina M, Bonnard D, Barreau X, Darrouzet V, Franco-Vidal V. Anatomo-radiological study of the superior semicircular canal dehiscence of 37 cadaver temporal bones. Surg Radiol Anat. 2013;35(1):55–9.CrossRefGoogle Scholar
  84. 84.
    Carney AS, Ward V, Malluci CL, O’Donoghue GM, Robertson I, Baldwin DL, Maw AR, Coakham HB. Meningiomas involving the internal auditory canal: a diagnostic and surgical challenge. Skull Base Surg. 1999;9:87–94.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Crovetto-Martínez R, Vargas C, Lecumberri I, Bilbao A, Crovetto-De la Torre M, Whyte-Orozco J. Radiological correlation between the thickness of the roof of the glenoid fossa and that of the bony covering of the superior semicircular canal. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;125(4):358–63. Scholar
  86. 86.
    Fraile Rodrigo JJ, Cisneros AI, Obón J, Yus C, Crovetto R, Crovetto MA, Whyte J. Ontogenetic explanation for tegmen tympani dehiscence and superior semicircular canal dehiscence association. Acta Otorrinolaringol Esp. 2016;67(4):226–32.CrossRefGoogle Scholar
  87. 87.
    Rodríguez-Vázquez JF, Murakami G, Verdugo-López S, Abe S, Fujimiya M. Closure of the middle ear with special reference to the development of the tegmen tympani of the temporal bone. J Anat. 2011;218(6):690–8.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Zayas JO, Feliciano YZ, Hadley CR, Gomez AA, Vidal JA. Temporal bone trauma and the role of multidetector CT in the emergency department. Radiographics. 2011;31:1741–55.CrossRefGoogle Scholar
  89. 89.
    Brodie HA, Thompson TC. Management of complications from 820 temporal bone fractures. Am J Otol. 1997;18:188–97.Google Scholar
  90. 90.
    Dahiya R, Keller JD, Litofsky NS, Bankey PE, Bonassar LJ, Megerian CA. Temporal bone fractures: otic capsule sparing versus otic capsule violating clinical and radiographic considerations. J Trauma. 1999;47:1079–83.CrossRefGoogle Scholar
  91. 91.
    Little SC, Kesser BW. Radiographic classification of temporal bone fractures: clinical predictability using a new system. Arch Otolaryngol Head Neck Surg. 2006;132:1300–4.CrossRefGoogle Scholar
  92. 92.
    Nadol JB, Eavey RD. Acute and chronic mastoiditis: clinical presentation, diagnosis, and management. Curr Clin Top Infect Dis. 1995;15:204–9.Google Scholar
  93. 93.
    Hoberman A, Paradise JL. Acute otitis media: diagnosis and management in the year 2000. Pediatr Ann. 2000;29:609–19.CrossRefGoogle Scholar
  94. 94.
    Trojanowska A, Drop A, Trojanowski P, Rosińska-Bogusiewicz K, Klatka J, Bobek-Billewicz B. External and middle ear diseases: radiological diagnosis based on clinical signs and symptoms. Insights Imaging. 2012;3:33–48.CrossRefGoogle Scholar
  95. 95.
    Arnold W, Ganzer U. Otorhinolaryngology, head and neck surgery. Berlin: Springer; 2010.Google Scholar
  96. 96.
    Juliano AF, Ting EY, Mingkwansook V, Hamberg LM, Curtin HD. Vestibular aqueduct measurements in the 45° oblique (Pöschl) plane. Am J Neuroradiol. 2016;37(7):1331–7. A4735v1-0.CrossRefGoogle Scholar
  97. 97.
    Bianchini C, Aimoni C, Ceruti S, Grasso DL, Martini A. Lateral sinus thrombosis as a complication of acute mastoiditis. ACTA Otorhinolaryngologica Italica. 2008;28:30–3.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Hadlock TA, Ferraro NF, Rahbar R. Acute mastoiditis with temporomandibular joint effusion. Otolaryngol Head Neck Surg. 2001;125:111–2.CrossRefGoogle Scholar
  99. 99.
    Weissman JL, Hirsch BE, Chan K, Tabor EK, Curtin HD. Dehiscent temporomandibular joint. Radiology. 1991;180:211–3.CrossRefGoogle Scholar
  100. 100.
    Bonjardim LR, Gaviao MB, Carmagnani FG, Pereira LJ, Castelo PM. Signs and symptoms of temporomandibular joint dysfunction in children with primary dentition. J Clin Pediatr Dent. 2003;28:53–8.CrossRefGoogle Scholar
  101. 101.
    Castelo PM, Gaviao MB, Pereira LJ, Bonjardim LR. Relationship between oral parafunctional/nutritive sucking habits and temporomandibular joint dysfunction in primary dentition. Int J Paediatr Dent. 2005;15:29–36.CrossRefGoogle Scholar
  102. 102.
    Ash CM, Pinto OF. The TMJ and the middle ear: structural and functional correlates for aural symptoms associated with temporomandibular joint dysfunction. Int J Prosthodont. 1991;4:51–7.Google Scholar
  103. 103.
    Bernal M, Tsamtsouris A. Signs and symptoms of temporomandibular joint dysfunction in 3 to 5 year old children. J Pedod. 1986;10:127–40.Google Scholar
  104. 104.
    Somers T, de Foer B, Pauw RJ, Van Havenbergh T, Offeciers EF, Casselman JW. Petrous bone cholesteatoma: the value of MR non-EPI-DW imaging for follow-up after surgery. J Neurol Surg. 2014;75:228.Google Scholar
  105. 105.
    Chung R, Dorros S, Mafee MF, et al. Oper Tech Otolaryngol. 2014;25:58–65.CrossRefGoogle Scholar
  106. 106.
    Fruauff K, Coffey K, Chazen JL, Phillips CD. Temporal bone imaging. Top Magn Reson Imaging. 2015;24(1):39–55.CrossRefPubMedGoogle Scholar
  107. 107.
    Vaid S, Kamble Y, Vaid N, Bhatti S, Rawat S, Nanivadekar A, Karmarkar S. Role of magnetic resonance imaging in cholesteatoma: the Indian experience. Indian J Otolaryngol Head Neck Surg. 2013;65(Suppl 3):485–92.CrossRefPubMedGoogle Scholar
  108. 108.
    De Foer B, Vercruysse JP, Pilet B, et al. Technical report: single-shot turbo spin echo diffusion-weighted MR imaging versus spin echo planar diffusion-weighted MR imaging in the detection of acquired middle ear cholesteatoma: case report. Am J Neuroradiol. 2006;27:1480–2.Google Scholar
  109. 109.
    Vercruysse JP, De Foer B, Pouillon M, et al. The value of diffusion weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Eur Radiol. 2006;16:1461Y7.CrossRefGoogle Scholar
  110. 110.
    Lincot J, Veillon F, Riehm S, Babay N, Matern JF, Rock B, Dallaudière B, Meyer N. Middle ear cholesteatoma: compared diagnostic performances of two incremental MRI protocols including non-echo planar diffusion-weighted imaging acquired on 3T and 1.5T scanners. J Neuroradiol. 2015 Jul;42(4):193–201.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kaan Orhan
    • 1
  • Franciszek Burdan
    • 2
    • 3
  1. 1.Department of Dentomaxillofacial RadiologyAnkara University, Faculty of DentistryAnkaraTurkey
  2. 2.Department of RadiologySt. John’s Cancer CentreLublinPoland
  3. 3.Department of Human AnatomyMedical University of LublinLublinPoland

Personalised recommendations