Advertisement

Neuro-Anesthesiology Considerations in Spinal Cord Tumors

  • Zana BorovcaninEmail author
  • Vijay Ramaiah
  • Jacob Nadler
Chapter

Abstract

Surgery for spinal cord tumors provides unique challenges in anesthetic management. Patients often present with significant comorbid conditions, including serious cardiovascular, respiratory, renal, and neurologic impairments. Airway management may be complicated by cervical spine involvement or the need for single lung ventilation. Positioning for spine surgery, in particular prone positioning, introduces physiologic strains and increases the risk of iatrogenic injury. Anesthetic management may need to be altered to facilitate neurophysiological monitoring. Given the risk of major blood loss, steps can—and should—be taken to minimize blood loss and the need for allogeneic blood transfusion. In addition, patients undergoing spinal surgery often have significant postoperative pain, and this must be addressed both intraoperatively and postoperatively.

Keywords

Anesthesia Complications Neurophysiological monitoring Blood conservation Positioning Pain management 

References

  1. 1.
    Apfelbaum JL, Hagberg CA, Caplan RA, Blitt CD, Connis RT, Nickinovich DG, Hagberg CA, Caplan RA, Benumof JL, Berry FA, Blitt CD, Bode RH, Cheney FW, Connis RT, Guidry OF, Nickinovich DG, Ovassapian A, American Society of Anesthesiologists Task Force on Management of the Difficult A (2013) Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology 118 (2):251–270.  https://doi.org/10.1097/ALN.0b013e31827773b2.PubMedCrossRefGoogle Scholar
  2. 2.
    Cook TM, MacDougall-Davis SR. Complications and failure of airway management. Br J Anaesth. 2012;109(Suppl 1):i68–85.  https://doi.org/10.1093/bja/aes393.PubMedCrossRefGoogle Scholar
  3. 3.
    Cook TM, Woodall N, Frerk C, Fourth National Audit P. Major complications of airway management in the UK: results of the fourth National Audit Project of the Royal College of Anaesthetists and the difficult airway society. Part 1: anaesthesia. Br J Anaesth. 2011;106(5):617–31.  https://doi.org/10.1093/bja/aer058.PubMedCrossRefGoogle Scholar
  4. 4.
    Peterson GN, Domino KB, Caplan RA, Posner KL, Lee LA, Cheney FW. Management of the difficult airway: a closed claims analysis. Anesthesiology. 2005;103(1):33–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Henderson JJ, Popat MT, Latto IP, Pearce AC, Difficult Airway S. Difficult airway society guidelines for management of the unanticipated difficult intubation. Anaesthesia. 2004;59(7):675–94.  https://doi.org/10.1111/j.1365-2044.2004.03831.x.PubMedCrossRefGoogle Scholar
  6. 6.
    Sahin A, Salman MA, Erden IA, Aypar U. Upper cervical vertebrae movement during intubating laryngeal mask, fibreoptic and direct laryngoscopy: a video-fluoroscopic study. Eur J Anaesthesiol. 2004;21(10):819–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Serocki G, Bein B, Scholz J, Dorges V. Management of the predicted difficult airway: a comparison of conventional blade laryngoscopy with video-assisted blade laryngoscopy and the GlideScope. Eur J Anaesthesiol. 2010;27(1):24–30.  https://doi.org/10.1097/EJA.0b013e32832d328d.PubMedCrossRefGoogle Scholar
  8. 8.
    Adnet F, Borron SW, Racine SX, Clemessy JL, Fournier JL, Plaisance P, Lapandry C. The intubation difficulty scale (IDS): proposal and evaluation of a new score characterizing the complexity of endotracheal intubation. Anesthesiology. 1997;87(6):1290–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Cavallone LF, Vannucci A. Review article: Extubation of the difficult airway and extubation failure. Anesth Analg. 2013;116(2):368–83.  https://doi.org/10.1213/ANE.0b013e31827ab572.PubMedCrossRefGoogle Scholar
  10. 10.
    Dharmavaram S, Jellish WS, Nockels RP, Shea J, Mehmood R, Ghanayem A, Kleinman B, Jacobs W. Effect of prone positioning systems on hemodynamic and cardiac function during lumbar spine surgery: an echocardiographic study. Spine (Phila Pa 1976). 2006;31(12):1388–93.; discussion 1394.  https://doi.org/10.1097/01.brs.0000218485.96713.44.CrossRefGoogle Scholar
  11. 11.
    Toyota S, Amaki Y. Hemodynamic evaluation of the prone position by transesophageal echocardiography. J Clin Anesth. 1998;10(1):32–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Yokoyama M, Ueda W, Hirakawa M, Yamamoto H. Hemodynamic effect of the prone position during anesthesia. Acta Anaesthesiol Scand. 1991;35(8):741–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee TC, Yang LC, Chen HJ. Effect of patient position and hypotensive anesthesia on inferior vena caval pressure. Spine (Phila Pa 1976). 1998;23(8):941–7. discussion 947-948CrossRefGoogle Scholar
  14. 14.
    Schonauer C, Bocchetti A, Barbagallo G, Albanese V, Moraci A. Positioning on surgical table. Eur Spine J. 2004;13(Suppl 1):S50–5.  https://doi.org/10.1007/s00586-004-0728-y.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lumb AB, Nunn JF. Respiratory function and ribcage contribution to ventilation in body positions commonly used during anesthesia. Anesth Analg. 1991;73(4):422–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Pelosi P, Croci M, Calappi E, Cerisara M, Mulazzi D, Vicardi P, Gattinoni L. The prone positioning during general anesthesia minimally affects respiratory mechanics while improving functional residual capacity and increasing oxygen tension. Anesth Analg. 1995;80(5):955–60.PubMedGoogle Scholar
  17. 17.
    Coonan TJ, Hope CE. Cardio-respiratory effects of change of body position. Can Anaesth Soc J. 1983;30(4):424–38.PubMedCrossRefGoogle Scholar
  18. 18.
    Edgcombe H, Carter K, Yarrow S. Anaesthesia in the prone position. Br J Anaesth. 2008;100(2):165–83.  https://doi.org/10.1093/bja/aem380.PubMedCrossRefGoogle Scholar
  19. 19.
    Jones AT, Hansell DM. Evans TW (2001) pulmonary perfusion in supine and prone positions: an electron-beam computed tomography study. J Appl Physiol. 1985;90(4):1342–8.  https://doi.org/10.1152/jappl.2001.90.4.1342.CrossRefGoogle Scholar
  20. 20.
    Tong CK, Chen JC, Cochrane DD. Spinal cord infarction remote from maximal compression in a patient with Morquio syndrome. J Neurosurg Pediatr. 2012;9(6):608–12.  https://doi.org/10.3171/2012.2.PEDS11522.PubMedCrossRefGoogle Scholar
  21. 21.
    Cheney FW, Domino KB, Caplan RA, Posner KL. Nerve injury associated with anesthesia: a closed claims analysis. Anesthesiology. 1999;90(4):1062–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Kamel IR, Drum ET, Koch SA, Whitten JA, Gaughan JP, Barnette RE, Wendling WW. The use of somatosensory evoked potentials to determine the relationship between patient positioning and impending upper extremity nerve injury during spine surgery: a retrospective analysis. Anesth Analg. 2006;102(5):1538–42.  https://doi.org/10.1213/01.ane.0000198666.11523.d6.PubMedCrossRefGoogle Scholar
  23. 23.
    Rubin DS, Parakati I, Lee LA, Moss HE, Joslin CE, Roth S. Perioperative visual loss in spine fusion surgery: ischemic optic neuropathy in the United States from 1998 to 2012 in the Nationwide inpatient sample. Anesthesiology. 2016;125(3):457–64.  https://doi.org/10.1097/ALN.0000000000001211.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ramaiah VK, LL. Postoperative visual loss and ischemic optic neuropathy. Neurologic Outcomes of Surgery and Anesthesia Oxford University Press; 2013.  https://doi.org/10.1093/med/9780199895724.001.0001.Google Scholar
  25. 25.
    American Society of Anesthesiologists Task Force on Perioperative Visual L. Practice advisory for perioperative visual loss associated with spine surgery: an updated report by the American Society of Anesthesiologists Task Force on perioperative visual loss. Anesthesiology. 2012;116(2):274–85.  https://doi.org/10.1097/ALN.0b013e31823c104d.CrossRefGoogle Scholar
  26. 26.
    Bala E, Sessler DI, Nair DR, McLain R, Dalton JE, Farag E. Motor and somatosensory evoked potentials are well maintained in patients given dexmedetomidine during spine surgery. Anesthesiology. 2008;109(3):417–25.  https://doi.org/10.1097/ALN.0b013e318182a467.PubMedCrossRefGoogle Scholar
  27. 27.
    Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG. Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology. 1992;76(4):502–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Pathak KS, Amaddio MD, Scoles PV, Shaffer JW, Mackay W. Effects of halothane, enflurane, and isoflurane in nitrous oxide on multilevel somatosensory evoked potentials. Anesthesiology. 1989;70(2):207–12.PubMedCrossRefGoogle Scholar
  29. 29.
    McPherson RW, Mahla M, Johnson R, Traystman RJ. Effects of enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials during fentanyl anesthesia. Anesthesiology. 1985;62(5):626–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Peterson DO, Drummond JC, Todd MM. Effects of halothane, enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials in humans. Anesthesiology. 1986;65(1):35–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Vaugha DJ, Thornton C, Wright DR, Fernandes JR, Robbins P, Dore C, Brunner MD. Effects of different concentrations of sevoflurane and desflurane on subcortical somatosensory evoked responses in anaesthetized, non-stimulated patients. Br J Anaesth. 2001;86(1):59–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Sloan T, Sloan H, Rogers J. Nitrous oxide and isoflurane are synergistic with respect to amplitude and latency effects on sensory evoked potentials. J Clin Monit Comput. 2010;24(2):113–23.  https://doi.org/10.1007/s10877-009-9219-3.PubMedCrossRefGoogle Scholar
  33. 33.
    Logginidou HG, Li BH, Li DP, Lohmann JS, Schuler HG, Divittore NA, Kreiser S, Cronin AJ. Propofol suppresses the cortical somatosensory evoked potential in rats. Anesth Analg. 2003;97(6):1784–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Kalkman CJ, Leyssius AT, Bovill JG. Influence of high-dose opioid anesthesia on posterior tibial nerve somatosensory cortical evoked potentials: effects of fentanyl, sufentanil, and alfentanil. J Cardiothorac Anesth. 1988;2(6):758–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Shils JL, Sloan TB. Intraoperative neuromonitoring. Int Anesthesiol Clin. 2015;53(1):53–73.  https://doi.org/10.1097/AIA.0000000000000043.PubMedCrossRefGoogle Scholar
  36. 36.
    Urban MK, Fields K, Donegan SW, Beathe JC, Pinter DW, Boachie-Adjei O, Emerson RG. A randomized crossover study of the effects of lidocaine on motor- and sensory-evoked potentials during spinal surgery. Spine J. 2017;17(12):1889–96.  https://doi.org/10.1016/j.spinee.2017.06.024.PubMedCrossRefGoogle Scholar
  37. 37.
    Rozet I, Metzner J, Brown M, Treggiari MM, Slimp JC, Kinney G, Sharma D, Lee LA, Vavilala MS. Dexmedetomidine does not affect evoked potentials during spine surgery. Anesth Analg. 2015;121(2):492–501.  https://doi.org/10.1213/ANE.0000000000000840.PubMedCrossRefGoogle Scholar
  38. 38.
    Koht A, Schutz W, Schmidt G, Schramm J, Watanabe E. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg. 1988;67(5):435–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Schubert A, Licina MG, Lineberry PJ. The effect of ketamine on human somatosensory evoked potentials and its modification by nitrous oxide. Anesthesiology. 1990;72(1):33–9.PubMedCrossRefGoogle Scholar
  40. 40.
    McPherson RW, Levitt R. Effect of time and dose on scalp-recorded somatosensory evoked potential wave augmentation by etomidate. J Neurosurg Anesthesiol. 1989;1(1):16–21.PubMedCrossRefGoogle Scholar
  41. 41.
    Sloan TB, Toleikis JR, Toleikis SC, Koht A. Intraoperative neurophysiological monitoring during spine surgery with total intravenous anesthesia or balanced anesthesia with 3% desflurane. J Clin Monit Comput. 2015;29(1):77–85.  https://doi.org/10.1007/s10877-014-9571-9.PubMedCrossRefGoogle Scholar
  42. 42.
    Ubags LH, Kalkman CJ, Been HD, Koelman JH, Ongerboer De Visser BW. A comparison of myogenic motor evoked responses to electrical and magnetic transcranial stimulation during nitrous oxide/opioid anesthesia. Anesth Analg. 1999;88(3):568–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Thees C, Scheufler KM, Nadstawek J, Pechstein U, Hanisch M, Juntke R, Zentner J, Hoeft A. Influence of fentanyl, alfentanil, and sufentanil on motor evoked potentials. J Neurosurg Anesthesiol. 1999;11(2):112–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Kothbauer K, Schmid UD, Liechti S, Rosler KM. The effect of ketamine anesthetic induction on muscle responses to transcranial magnetic cortex stimulation studied in man. Neurosci Lett. 1993;154(1–2):105–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Mahmoud M, Sadhasivam S, Salisbury S, Nick TG, Schnell B, Sestokas AK, Wiggins C, Samuels P, Kabalin T, McAuliffe J. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112(6):1364–73.  https://doi.org/10.1097/ALN.0b013e3181d74f55.PubMedCrossRefGoogle Scholar
  46. 46.
    Tobias JD, Goble TJ, Bates G, Anderson JT, Hoernschemeyer DG. Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Paediatr Anaesth. 2008;18(11):1082–8.  https://doi.org/10.1111/j.1460-9592.2008.02733.x.PubMedCrossRefGoogle Scholar
  47. 47.
    Shander A, Hofmann A, Ozawa S, Theusinger OM, Gombotz H, Spahn DR. Activity-based costs of blood transfusions in surgical patients at four hospitals. Transfusion. 2010;50(4):753–65.  https://doi.org/10.1111/j.1537-2995.2009.02518.x.PubMedCrossRefGoogle Scholar
  48. 48.
    Guinn NR, Guercio JR, Hopkins TJ, Grimsley A, Kurian DJ, Jimenez MI, Bolognesi MP, Schroeder R, Aronson S, Duke Perioperative Enhancement T. How do we develop and implement a preoperative anemia clinic designed to improve perioperative outcomes and reduce cost? Transfusion. 2016;56(2):297–303.  https://doi.org/10.1111/trf.13426.PubMedCrossRefGoogle Scholar
  49. 49.
    Cha CW, Deible C, Muzzonigro T, Lopez-Plaza I, Vogt M, Kang JD. Allogeneic transfusion requirements after autologous donations in posterior lumbar surgeries. Spine (Phila Pa 1976). 2002;27(1):99–104.CrossRefGoogle Scholar
  50. 50.
    Brookfield KF, Brown MD, Henriques SM, Buttacavoli FA, Seitz AP. Allogeneic transfusion after predonation of blood for elective spine surgery. Clin Orthop Relat Res. 2008;466(8):1949–53.  https://doi.org/10.1007/s11999-008-0306-4.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Park CK. The effect of patient positioning on intraabdominal pressure and blood loss in spinal surgery. Anesth Analg. 2000;91(3):552–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Li D, Bohringer C, Liu H. What is "normal" intraoperative blood pressure and do deviations from it really affect postoperative outcome? J Biomed Res. 2017;31(2):79–81.  https://doi.org/10.7555/JBR.31.20160167.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Fergusson DA, Hebert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, Teoh K, Duke PC, Arellano R, Blajchman MA, Bussieres JS, Cote D, Karski J, Martineau R, Robblee JA, Rodger M, Wells G, Clinch J, Pretorius R, Investigators B. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358(22):2319–31.  https://doi.org/10.1056/NEJMoa0802395.PubMedCrossRefGoogle Scholar
  54. 54.
    Elgafy H, Bransford RJ, McGuire RA, Dettori JR, Fischer D. Blood loss in major spine surgery: are there effective measures to decrease massive hemorrhage in major spine fusion surgery? Spine (Phila Pa 1976). 2010;35(9 Suppl):S47–56.  https://doi.org/10.1097/BRS.0b013e3181d833f6.CrossRefGoogle Scholar
  55. 55.
    Wong J, El Beheiry H, Rampersaud YR, Lewis S, Ahn H, De Silva Y, Abrishami A, Baig N, McBroom RJ, Chung F. Tranexamic acid reduces perioperative blood loss in adult patients having spinal fusion surgery. Anesth Analg. 2008;107(5):1479–86.  https://doi.org/10.1213/ane.0b013e3181831e44.PubMedCrossRefGoogle Scholar
  56. 56.
    Murkin JM, Falter F, Granton J, Young B, Burt C, Chu M. High-dose tranexamic acid is associated with nonischemic clinical seizures in cardiac surgical patients. Anesth Analg. 2010;110(2):350–3.  https://doi.org/10.1213/ANE.0b013e3181c92b23.PubMedCrossRefGoogle Scholar
  57. 57.
    Florentino-Pineda I, Thompson GH, Poe-Kochert C, Huang RP, Haber LL, Blakemore LC. The effect of amicar on perioperative blood loss in idiopathic scoliosis: the results of a prospective, randomized double-blind study. Spine (Phila Pa 1976). 2004;29(3):233–8.CrossRefGoogle Scholar
  58. 58.
    Nagarsheth NP, Sharma T, Shander A, Awan A. Blood salvage use in gynecologic oncology. Transfusion. 2009;49(10):2048–53.  https://doi.org/10.1111/j.1537-2995.2009.02256.x.PubMedCrossRefGoogle Scholar
  59. 59.
    Gerbershagen HJ, Aduckathil S, van Wijck AJ, Peelen LM, Kalkman CJ, Meissner W. Pain intensity on the first day after surgery: a prospective cohort study comparing 179 surgical procedures. Anesthesiology. 2013;118(4):934–44.  https://doi.org/10.1097/ALN.0b013e31828866b3.PubMedCrossRefGoogle Scholar
  60. 60.
    Gianesello L, Pavoni V, Barboni E, Galeotti I, Nella A. Perioperative pregabalin for postoperative pain control and quality of life after major spinal surgery. J Neurosurg Anesthesiol. 2012;24(2):121–6.  https://doi.org/10.1097/ANA.0b013e31823a885b.PubMedCrossRefGoogle Scholar
  61. 61.
    Hernandez-Palazon J, Tortosa JA, Martinez-Lage JF, Perez-Flores D. Intravenous administration of propacetamol reduces morphine consumption after spinal fusion surgery. Anesth Analg. 2001;92(6):1473–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Turan A, Karamanlioglu B, Memis D, Hamamcioglu MK, Tukenmez B, Pamukcu Z, Kurt I. Analgesic effects of gabapentin after spinal surgery. Anesthesiology. 2004;100(4):935–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Gottschalk A, Durieux ME, Nemergut EC. Intraoperative methadone improves postoperative pain control in patients undergoing complex spine surgery. Anesth Analg. 2011;112(1):218–23.  https://doi.org/10.1213/ANE.0b013e3181d8a095.PubMedCrossRefGoogle Scholar
  64. 64.
    Joly V, Richebe P, Guignard B, Fletcher D, Maurette P, Sessler DI, Chauvin M. Remifentanil-induced postoperative hyperalgesia and its prevention with small-dose ketamine. Anesthesiology. 2005;103(1):147–55.PubMedCrossRefGoogle Scholar
  65. 65.
    Loftus RW, Yeager MP, Clark JA, Brown JR, Abdu WA, Sengupta DK, Beach ML. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology. 2010;113(3):639–46.  https://doi.org/10.1097/ALN.0b013e3181e90914.PubMedCrossRefGoogle Scholar
  66. 66.
    Jabbour HJ, Naccache NM, Jawish RJ, Abou Zeid HA, Jabbour KB, Rabbaa-Khabbaz LG, Ghanem IB, Yazbeck PH. Ketamine and magnesium association reduces morphine consumption after scoliosis surgery: prospective randomised double-blind study. Acta Anaesthesiol Scand. 2014;58(5):572–9.  https://doi.org/10.1111/aas.12304.PubMedCrossRefGoogle Scholar
  67. 67.
    Levaux C, Bonhomme V, Dewandre PY, Brichant JF, Hans P. Effect of intra-operative magnesium sulphate on pain relief and patient comfort after major lumbar orthopaedic surgery. Anaesthesia. 2003;58(2):131–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology & Perioperative MedicineUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations