Advertisement

Intraoperative Neurophysiology during Surgery for Spinal Cord Tumors

  • Vedran Deletis
  • Kathleen Seidel
Chapter

Abstract

Intraoperative neurophysiological monitoring might allow surgical tumor resection with functional guidance and real-time feed-back. The available methods can be divided in monitoring methods to continuously assess the functional integrity and mapping methods to identify eloquent tissue. In the following chapter we describe indication, set-up, interpretation and limitations of available neurophysiological methods in spinal cord tumor surgery.

Keywords

Intraoperative Neurophysiological Monitoring Functional Neurophysiological Guidance Functional Integrity Spinal Cord Pathways Mapping Motor Evoked Potentials Sensory Evoked Potentials D-wave 

References

  1. 1.
    Macdonald DB, Skinner S, Shils J, Yingling C. Intraoperative motor evoked potential monitoring - a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124(12):2291–316.  https://doi.org/10.1016/j.clinph.2013.07.025.CrossRefGoogle Scholar
  2. 2.
    Deletis V. Intraoperative neurophysiology of the corticospinal tract of the spinal cord. In: Functional Neuroscience: Evoked Potentials and Related Techniques. ( Suppl. To Clinical NeurophysiologyVol 59) (Eds. C.Barber, S. Tsuji, S. Tobimatsu, T. Uozumi, N. Akamatsu, A.Eisen) 2006, pp.105-109.Google Scholar
  3. 3.
    Scibilia A, Terranova C, Rizzo V, Raffa G, Morelli A, Esposito F, Mallamace R, Buda G, Conti A, Quartarone A, Germano A. Intraoperative neurophysiological mapping and monitoring in spinal tumor surgery: sirens or indispensable tools? Neurosurg Focus. 2016;41(2):E18.  https://doi.org/10.3171/2016.5.focus16141.CrossRefPubMedGoogle Scholar
  4. 4.
    Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery. 2006;58(6):1129–43.; discussion 1129-1143.  https://doi.org/10.1227/01.neu.0000215948.97195.58.CrossRefPubMedGoogle Scholar
  5. 5.
    Sala F, Tramontano V, Squintani G, Arcaro C, Tot E, Pinna G, Meglio M. Neurophysiology of complex spinal cord untethering. J Clin Neurophysiol. 2014;31(4):326–36.  https://doi.org/10.1097/wnp.0000000000000115.CrossRefPubMedGoogle Scholar
  6. 6.
    Pang D, Zovickian J, Oviedo A. Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode: part I-surgical technique. Neurosurgery. 2009;65(3):511–28.; discussion 528-519.  https://doi.org/10.1227/01.neu.0000350879.02128.80.CrossRefPubMedGoogle Scholar
  7. 7.
    Pang D, Zovickian J, Oviedo A. Long-term outcome of total and near-total resection of spinal cord lipomas and radical reconstruction of the neural placode, part II: outcome analysis and preoperative profiling. Neurosurgery. 2010;66(2):253–72.; discussion 272-253.  https://doi.org/10.1227/01.neu.0000363598.81101.7b.CrossRefPubMedGoogle Scholar
  8. 8.
    Pang D, Zovickian J, Wong ST, Hou YJ, Moes GS. Surgical treatment of complex spinal cord lipomas. Childs Nerv Syst. 2013;29(9):1485–513.  https://doi.org/10.1007/s00381-013-2187-4.CrossRefPubMedGoogle Scholar
  9. 9.
    Constantini S, Miller DC, Allen JC, Rorke LB, Freed D, Epstein FJ. Radical excision of intramedullary spinal cord tumors: surgical morbidity and long-term follow-up evaluation in 164 children and young adults. J Neurosurg. 2000;93(2 Suppl):183–93.PubMedGoogle Scholar
  10. 10.
    Kothbauer KF, Deletis V, Epstein FJ. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus. 1998;4(5):e1.PubMedGoogle Scholar
  11. 11.
    Siller S, Szelenyi A, Herlitz L, Tonn JC, Zausinger S. Spinal cord hemangioblastomas: significance of intraoperative neurophysiological monitoring for resection and long-term outcome. J Neurosurg Spine. 2017;26(4):483–93.  https://doi.org/10.3171/2016.8.spine16595.CrossRefPubMedGoogle Scholar
  12. 12.
    Kothbauer K, Deletis V, Epstein FJ. Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct. Pediatr Neurosurg. 1997;26(5):247–54.CrossRefGoogle Scholar
  13. 13.
    Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119(2):248–64.  https://doi.org/10.1016/j.clinph.2007.09.135.CrossRefPubMedGoogle Scholar
  14. 14.
    Sala F, Kothbaurer K. Intraoperative neurophysiological monitoring during surgery for intramedullary spinal cord tumors. In: Nuwer MR (ed) Intraoperative monitoring of neural function. Elsevier. 2008; pp. 632–650.Google Scholar
  15. 15.
    Deletis V, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Neurosurgery. 1997;40(1):88–92. discussion 92-83PubMedGoogle Scholar
  16. 16.
    Deletis V, Bueno De Camargo A. Interventional neurophysiological mapping during spinal cord procedures. Stereotact Funct Neurosurg. 2001;77(1–4):25–8.CrossRefGoogle Scholar
  17. 17.
    Yanni DS, Ulkatan S, Deletis V, Barrenechea IJ, Sen C, Perin NI. Utility of neurophysiological monitoring using dorsal column mapping in intramedullary spinal cord surgery. J Neurosurg Spine. 2010;12(6):623–8.  https://doi.org/10.3171/2010.1.spine09112.CrossRefPubMedGoogle Scholar
  18. 18.
    Nair D, Kumaraswamy VM, Braver D, Kilbride RD, Borges LF, Simon MV. Dorsal column mapping via phase reversal method: the refined technique and clinical applications. Neurosurgery. 2014;74(4):437–46.; discussion 446.  https://doi.org/10.1227/neu.0000000000000287.CrossRefPubMedGoogle Scholar
  19. 19.
    Quinones-Hinojosa A, Gulati M, Lyon R, Gupta N, Yingling C. Spinal cord mapping as an adjunct for resection of intramedullary tumors: surgical technique with case illustrations. Neurosurgery. 2002;51(5):1199–206. discussion 1206-1197CrossRefGoogle Scholar
  20. 20.
    Deletis V. Intraoperative neurophysiology of the corticospinal tract of the spinal cord. In: Barber C, Tsuji S, Tobimatsu S, Uozumi T, Akamatsu N, Eisen A, editors. Functional neuroscience: evoked potentials and related techniques, (supplements to Clinical Neurophysiology, vol 59). Amsterdam: Elsevier; 2006. p. 105–9.Google Scholar
  21. 21.
    Gandhi R, Curtis CM, Cohen-Gadol AA. High-resolution direct microstimulation mapping of spinal cord motor pathways during resection of an intramedullary tumor. J Neurosurg Spine. 2015;22(2):205–10.  https://doi.org/10.3171/2014.10.spine1474.CrossRefPubMedGoogle Scholar
  22. 22.
    Duffau H, Lopes M, Sichez JP, Bitar A, Capelle L. A new device for electrical stimulation mapping of the brainstem and spinal cord. Minim Invasive Neurosurg. 2003;46(1):61–4.  https://doi.org/10.1055/s-2003-37961.CrossRefPubMedGoogle Scholar
  23. 23.
    Duffau H, Capelle L, Sichez J. Direct spinal cord electrical stimulations during surgery of intramedullary tumoral and vascular lesions. Stereotact Funct Neurosurg. 1998;71(4):180–9.CrossRefGoogle Scholar
  24. 24.
    Barzilai O, Lidar Z, Constantini S, Salame K, Bitan-Talmor Y, Korn A. Continuous mapping of the corticospinal tracts in intramedullary spinal cord tumor surgery using an electrified ultrasonic aspirator. J Neurosurg Spine. 2017;27(2):161–8.  https://doi.org/10.3171/2016.12.spine16985.CrossRefPubMedGoogle Scholar
  25. 25.
    Deletis V, Kothbauer KF, Sala F, Seidel K. Letter to the Editor: Electrical activity in limb muscles after spinal cord stimulation is not specific for the corticospinal tract. J Neurosurg Spine. 2016;26(2):267–9.  https://doi.org/10.3171/2016.6.spine16591.CrossRefPubMedGoogle Scholar
  26. 26.
    Deletis V, Seidel K, Sala F, Raabe A, Chudy D, Beck J, Kothbauer KF. Intraoperative identification of the corticospinal tract and dorsal column of the spinal cord by electrical stimulation. J Neurol Neurosurg Psychiatry. 2018;  https://doi.org/10.1136/jnnp-2017-317172.CrossRefGoogle Scholar
  27. 27.
    Kombos T, Suess O, Da Silva C, Ciklatekerlio O, Nobis V, Brock M. Impact of somatosensory evoked potential monitoring on cervical surgery. J Clin Neurophysiol. 2003;20(2):122–8.CrossRefGoogle Scholar
  28. 28.
    Raynor BL, Bright JD, Lenke LG, Rahman RK, Bridwell KH, Riew KD, Buchowski JM, Luhmann SJ, Padberg AM. Significant change or loss of intraoperative monitoring data: a 25-year experience in 12,375 spinal surgeries. Spine. 2013;38(2):E101–8.  https://doi.org/10.1097/BRS.0b013e31827aafb9.CrossRefPubMedGoogle Scholar
  29. 29.
    Plata Bello J, Perez-Lorensu PJ, Roldan-Delgado H, Brage L, Rocha V, Hernandez-Hernandez V, Doniz A, Garcia-Marin V. Role of multimodal intraoperative neurophysiological monitoring during positioning of patient prior to cervical spine surgery. Clin Neurophysiol. 2015;126(6):1264–70.  https://doi.org/10.1016/j.clinph.2014.09.020.CrossRefPubMedGoogle Scholar
  30. 30.
    Beck J, Ulrich CT, Fung C, Fichtner J, Seidel K, Fiechter M, Hsieh K, Murek M, Bervini D, Meier N, Mono ML, Mordasini P, Hewer E, Z'Graggen WJ, Gralla J, Raabe A. Diskogenic microspurs as a major cause of intractable spontaneous intracranial hypotension. Neurology. 2016;87(12):1220–6.  https://doi.org/10.1212/wnl.0000000000003122.CrossRefPubMedGoogle Scholar
  31. 31.
    Ghadirpour R, Nasi D, Iaccarino C, Giraldi D, Sabadini R, Motti L, Sala F, Servadei F. Intraoperative neurophysiological monitoring for intradural extramedullary tumors: why not? Clin Neurol Neurosurg. 2015;130:140–9.  https://doi.org/10.1016/j.clineuro.2015.01.007.CrossRefPubMedGoogle Scholar
  32. 32.
    Deletis V, Vodusek DB, Abbott R, Epstein FJ, Turndorf H. Intraoperative monitoring of the dorsal sacral roots: minimizing the risk of iatrogenic micturition disorders. Neurosurgery. 1992;30(1):72–5.CrossRefGoogle Scholar
  33. 33.
    Wostrack M, Shiban E, Obermueller T, Gempt J, Meyer B, Ringel F. Conus medullaris and cauda equina tumors: clinical presentation, prognosis, and outcome after surgical treatment: clinical article. J Neurosurg Spine. 2014;20(3):335–43.  https://doi.org/10.3171/2013.12.spine13668.CrossRefPubMedGoogle Scholar
  34. 34.
    Kothbauer KF, Deletis V. Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst. 2010;26(2):247–53.  https://doi.org/10.1007/s00381-009-1020-6.CrossRefPubMedGoogle Scholar
  35. 35.
    Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst. 2010;26(4):473–90.  https://doi.org/10.1007/s00381-009-1081-6.CrossRefPubMedGoogle Scholar
  36. 36.
    Sala F, Barone G, Tramontano V, Gallo P, Ghimenton C. Retained medullary cord confirmed by intraoperative neurophysiological mapping. Childs Nerv Syst. 2014;30(7):1287–91.  https://doi.org/10.1007/s00381-014-2372-0.CrossRefPubMedGoogle Scholar
  37. 37.
    Deletis V. Intraoperative monitoring of the functional integrity of the motor pathways. Adv Neurol. 1993;63:201–14.PubMedGoogle Scholar
  38. 38.
    Deletis V, Rodi Z, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2. Relationship between epidurally and muscle recorded MEPs in man. Clin Neurophysiol. 2001;112(3):445–52.CrossRefGoogle Scholar
  39. 39.
    Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.CrossRefGoogle Scholar
  40. 40.
    Kothbauer KF. The Interpretation of Muscle Motor Evoked Potentials for Spinal Cord Monitoring. J Clin Neurophysiol. 2017;34(1):32–7.  https://doi.org/10.1097/wnp.0000000000000314.CrossRefPubMedGoogle Scholar
  41. 41.
    Deletis V. Intraoperative neurophysiological monitoring. In: McLone DG, Marlin AE (eds) Pediatric neurosurgery: surgery of the developing nervous system. 4th edn. W.B.Saunders Philadelphia; 2001; pp 1204–1213.Google Scholar
  42. 42.
    Macdonald DB, Al Zayed Z, Al Saddigi A. Four-limb muscle motor evoked potential and optimized somatosensory evoked potential monitoring with decussation assessment: results in 206 thoracolumbar spine surgeries. Eur Spine J. 2007;16(Suppl 2):S171–87.  https://doi.org/10.1007/s00586-007-0426-7.CrossRefPubMedGoogle Scholar
  43. 43.
    Shils JL, Arle JE. Intraoperative neurophysiologic methods for spinal cord stimulator placement under general anesthesia. Neuromodulation. 2012;15(6):560–71.; discussion 571-562.  https://doi.org/10.1111/j.1525-1403.2012.00460.x.CrossRefPubMedGoogle Scholar
  44. 44.
    Huang JC, Deletis V, Vodusek DB, Abbott R. Preservation of pudendal afferents in sacral rhizotomies. Neurosurgery. 1997;41(2):411–5.CrossRefGoogle Scholar
  45. 45.
    Skinner SA, Vodusek DB. Intraoperative recording of the bulbocavernosus reflex. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 2014;31(4):313–22.  https://doi.org/10.1097/wnp.0000000000000054.CrossRefGoogle Scholar
  46. 46.
    Rodi Z, Vodusek DB. Intraoperative monitoring of the bulbocavernosus reflex: the method and its problems. Clin Neurophysiol. 2001;112(5):879–83.CrossRefGoogle Scholar
  47. 47.
    Kothbauer K, Schmid UD, Seiler RW, Eisner W. Intraoperative motor and sensory monitoring of the cauda equina. Neurosurgery. 1994;34(4):702–7. discussion 707PubMedGoogle Scholar
  48. 48.
    Sala F, Squintani G, Tramontano V, Arcaro C, Faccioli F, Mazza C. Intraoperative neurophysiology in tethered cord surgery: techniques and results. Childs Nerv Syst. 2013;29(9):1611–24.  https://doi.org/10.1007/s00381-013-2188-3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vedran Deletis
    • 1
  • Kathleen Seidel
    • 2
  1. 1.Department of NeurosurgeryUniversity Hospital DubravaZagrebCroatia
  2. 2.Department of NeurosurgeryInselspital, Bern University HospitalBernSwitzerland

Personalised recommendations