Advertisement

Automatic Detection of Coral Reef Induced Turbulent Boundary Flow in the Red Sea from Flock-1 Satellite Data

  • Maged Marghany
  • Mohamed Hakami
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

The novelty of this study is the use of a multi-objective evolutionary algorithm for the automatic detection of hydrodynamic turbulent boundaries overlying coral reefs. The procedure is implemented using sequences of Flock-1 satellite data acquired in the Red Sea. The study demonstrates that implementing Pareto-optimal solutions allows for the generation of accurate coral reef-water interface patterns. This is validated by a Pareto-optimal front and the receiver-operating characteristic (ROC) curve. The Pareto-optimal front indicates a significant relationship between hydrodynamic turbulent boundaries, macroalgae, and coral reefs. The ROC curves confirm the finding of the Pareto-optimal front that hydrodynamic turbulent boundary layers and macroalgae are caused by coral reefs. The performance accuracy is identified with an under-curve area of 90%. In conclusion, the multi-objective evolutionary algorithm has the applicability for the automatic detection of hydrodynamic turbulent boundary layers to coral reef studies.

References

  1. Abu-Zied RH, Bantan RA, Basaham AS, El Mamoney MH, Al-Washmi HA (2011) Composition, distribution, and taphonomy of nearshore benthic foraminifera of the Farasan Islands, southern Red Sea. Saudi Arabia. J Foramin Res 41(4):349–362CrossRefGoogle Scholar
  2. Al-Anbaawy MIH (1993) Reefal facies and diagenesis of pleistocene sediments in Kamaran Island, southern Red Sea, Republic of Yemen. Egypt J Geol 37:137–151Google Scholar
  3. Andréfouët S, Mumby PJ, McField M, Hu C, Muller-Karger FE (2002) Revisiting coral reef connectivity. Coral Reefs 21:43–48CrossRefGoogle Scholar
  4. Al-Farawati R (2010) Environmental conditions of the coastal waters of southern corniche, Jeddah, eastern Red Sea: Physico-chemical approach. Aust J Basic Appl Sci 4(8):3324–3337Google Scholar
  5. Augustin N, van der Zwan FM, Devey CW, Ligi M, Kwasnitschka T, Feldens P, Bantan RA, Basaham AS (2016) Geomorphology of the central Red Sea rift: Determining spreading processes. Geomorphology 274:162–179CrossRefGoogle Scholar
  6. Bailey GN, Flemming NC, King GC, Lambeck K, Momber G, Moran LJ, Vita-Finzi C (2007) Coastlines, submerged landscapes, and human evolution: The Red Sea Basin and the Farasan Islands. J Island Coastal Archaeol 2(2):127–160CrossRefGoogle Scholar
  7. Bantan RA, Abu-Zied RH (2014) Sediment characteristics and molluscan fossils of the Farasan Islands shorelines, southern Red Sea. Saudi Arabia. Arabian J Geosci 7(2):773–787CrossRefGoogle Scholar
  8. Behairy AKA, Sheppard CR, El-Sayed MK (1992) A review of the geology of coral reefs in the Red Sea. Oceans and Coastal Areas Programme Activity Centre, UN Environment Programme. UNEP Regional Seas Reports and Studies 152:39Google Scholar
  9. Benfield SL, Guzman HM, Mair JM, Young JAT (2007) Mapping the distribution of coral reefs and associated sublittoral habitats in Pacific Panama: A comparison of optical satellite sensors and classification methodologies. Int J Remote Sens 23:5047–5070CrossRefGoogle Scholar
  10. Benayahu Y, Loya Y (1981) Competition for space among coral-reef sessile organisms at Eilat. Red Sea. Bull Marine Sci 31(3):514–522Google Scholar
  11. Boshuizen C, Mason J, Klupar P, Spanhake S (2014) Results from the planet labs Flock constellation. http://digitalcommons.usu.edu/smallsat/2014/PrivEnd/1/. Accessed August 23, 2015
  12. Bruckner A, Rowlands G, Riegl B, Purkis S, Williams A, Renaud P (2012) Khaled bin Sultan Living Oceans Foundation Atlas of Saudi Arabian Red Sea Marine Habitats. Panoramic Press, 262 ppGoogle Scholar
  13. Chiffings T (2003) Marine region 11: Arabia Seas. A global representative system of marine protected areas. http://www.deh.gov.au/coasts/mpa/nrsmpa/global/volume3/chapter11.html. Accessed June 2, 2017
  14. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evolutionary Computation 8:256–279CrossRefGoogle Scholar
  15. Corbane C, Marre F, Petit M (2008) Using SPOT-5 HRG data in panchromatic mode for operational detection of small ships in tropical area. Sensors 8(5):2959–2973CrossRefGoogle Scholar
  16. Costa BM, Battista TA, Pittman SJ (2009) Comparative evaluation of airborne LiDAR and ship-based multi-beam Sonar bathymetry and intensity for mapping coral reef ecosystems. Remote Sens Environ 113:1082–1100CrossRefGoogle Scholar
  17. Deb K (2001) Multi-objective optimization using evolutionary algorithms. WileyGoogle Scholar
  18. Deb K, Pratap A, Meyarivan T (2001) Constrained test problems for multi-objective evolutionary optimization. International Conf Evolutionary Multi-Criterion Optimization. Zurich, Switzerland, March 2001, pp 284–298Google Scholar
  19. Dekker AG, Phinn SR, Anstee J, Bissett P, Brando VE, Casey B, Fearns P, Hedley J, Klonowski W, Lee ZP (2011) Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnol Oceanogr Methods 9:396–425CrossRefGoogle Scholar
  20. Douabul A, Haddad AM (1970) The Red Sea and Yemen’s Red Sea environments. Hassell and Assoc, AMSAT and UNOPS, pp 1–16Google Scholar
  21. El-Beheiry MA, Shaltout KH (2011) Demographic analysis of Cornulaca monocantha Delile population in Asir region. Saudi Arabia. Egypt J Exp Biol (Bot) 7(1):67–78Google Scholar
  22. Emery KO, Csanady GT (1973) Surface circulation of lakes and nearly land-locked seas. Proc Nat Acad Sci 70(1):93–97CrossRefGoogle Scholar
  23. Goodman JA, Samuel JP, Stuart RP (2013) Coral reef remote sensing. A guide for mapping, monitoring and management. Springer, Berlin, p 436CrossRefGoogle Scholar
  24. Gunawan S, Farhang-Mehr A, Azarm S (2004) On maximizing solution diversity in a multiobjective multidisciplinary genetic algorithm for design optimization. Mechanics Based Design Structures Machines 32(4):491–514CrossRefGoogle Scholar
  25. Gurvich EG (2006) Metalliferous sediments of the Red Sea. Metalliferous Sediments of the World Ocean. Springer, Berlin Heidelberg, pp 127–210.  https://doi.org/10.1007/3-540-30969-1_3
  26. Hassan EM, El-Sabh MI (1975) Circulation and salinity distribution in the southern part of the Suez Canal. Limnology Oceanography 20(4):667–671CrossRefGoogle Scholar
  27. Hedley JD, Mumby PJ (2003) Biological and remote sensing perspectives of pigmentation in coral reef organisms. Adv Mar Biol 43:277–317CrossRefGoogle Scholar
  28. Hedley JD, Roelfsema C, Phinn S (2010) Propagating uncertainty through a shallow water mapping algorithm based on radiative transfer model inversion. In: Proc Ocean Optics XX, Anchorage, AK, USA, 27 September–1 October 2010Google Scholar
  29. Hedley JD, Roelfsema CM, Chollett I, Harborne AR, Heron SF, Weeks S, Skirving WJ, Strong AE, Eakin CM, Christensen TR, Ticzon V (2016) Remote sensing of coral reefs for monitoring and management: A review. Remote Sensing 8(2):118CrossRefGoogle Scholar
  30. Hoffman L, Van Heugten B, Dekker H (2006) Marine Mollusca collected during a journey to the Great Bitter Lake (Suez Canal) and Nile Delta. Egypt. Gloria Maris 45(1–2):30–45Google Scholar
  31. Hochberg EJ, Atkinson MJ, Andréfouët S (2003) Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sensing Environment 85(2):159–173CrossRefGoogle Scholar
  32. Hochberg EJ, Atkinson MJ, Apprill A, Andréfouët S (2004) Spectral reflectance of coral. Coral Reefs 23(1):84–95CrossRefGoogle Scholar
  33. Madl P (1999) Essay about the phenomenon of Lessepsian Migration. Colloquial Meeting of Marine Biology I, Salzburg, April 1999 (revised in Nov. 2001)Google Scholar
  34. Maillard C, Soliman G (1986) Hydrography of the Red-Sea and exchanges with the Indian-Ocean in summer. Oceanol Acta 9(3):249–269Google Scholar
  35. Marghany M (2013a) Genetic algorithm for oil spill automatic detection from Envisat satellite data. In: Murgante B, Misra S, Carlini M, Torre CM, Nguyen H-Q, Taniar D, Apduhan BO, Gervasi O (eds) Computational science and its applications—ICCSA 2013, 7972:587–598Google Scholar
  36. Marghany M (2013b) Genetic algorithm for oil spill automatic detection from MultiSAR satellite data. Proc 34th Asian Conference on Remote Sensing 2013, Bali, Indonesia, October 20–24, 2013, pp SC03671-SC03677Google Scholar
  37. Marghany M (2014a) Utilization of a genetic algorithm for the automatic detection of oil spill from RADARSAT-2 SAR satellite data. Marine Pollution Bull 89:20–29CrossRefGoogle Scholar
  38. Marghany M (2014b) Multi-objective evolutionary algorithm for oil spill detection from COSMO-SkyMed satellite. In: Murgante B, Misra S, Carlini M, Torre CM, Nguyen H-Q, Taniar D, Apduhan BO, Gervasi O (eds) Computational science and its applications–ICCSA 2014. Springer, pp 355–371Google Scholar
  39. Marghany M (2015) Flock 1 data multi-objective evolutionary algorithm for turbulent flow detection. CD of 36th Asian Conf Remote Sensing: Fostering Resilient Growth in Asia, ACRS 2015, Quezon City, Manila, Philippines, 24 October 2015—28 October 2015, pp 1–6Google Scholar
  40. Manning JK, Fogarty ES, Trotter MG, Schneider DA, Thomson PC, Bush RD, Cronin GM (2014) A pilot study into the use of global navigation satellite system technology to quantify the behavioural responses of sheep during simulated dog predation events. Animal Production Sci 54(10):1676–1681CrossRefGoogle Scholar
  41. Masud AS, Hwang CL (1981) Interactive sequential goal programming. J Operational Res Soc 32(5):391–400CrossRefGoogle Scholar
  42. Meshal AH, Morcos SA (1984) Evaporation from Lake Qarun and its water budget. J Conseil 41(2):140–144CrossRefGoogle Scholar
  43. Meshal AH, Behairy AKA, Osman MM (1984) Evaporation from coastal and open waters of the central zone of the Red Sea. Atmos Ocean 22(3):369–378CrossRefGoogle Scholar
  44. Miller AR, Munns RG (1973) The Bitter Lake salt barrier. IAPSO Symp Physical Oceanography of the Red Sea, sponsored by SCOR and UNESCO, Paris, 9–10 October 1972Google Scholar
  45. Mishra D, Narumalani S, Rundquist D, Lawson M (2006) Benthic habitat mapping in tropical marine environments using QuickBird multispectral data. Photogram Eng Remote Sens 72:1037–1048CrossRefGoogle Scholar
  46. Mohanta RK, Sethi B (2012) A review of genetic algorithm application for image segmentation. Int J Computer Technology Applications 3(2):6–13Google Scholar
  47. Morcos SM (1970) Physical and chemical oceanography of the Red Sea. In: Barnes H (ed) Oceanography and Marine Biology: An Annual Review 8:73–202Google Scholar
  48. Morcos SA, Messieh SN (1973) Circulation and salinity distribution in the southern part of the Suez Canal. Limnology Oceanography 18(1):121–130CrossRefGoogle Scholar
  49. Mumby PJ, Green EP, Edwards AJ, Clark CD (1997) Coral reef habitat mapping: How much detail can remote sensing provide? Mar Biol 130(2):193–202CrossRefGoogle Scholar
  50. Mumby PJ, Edwards AJ (2002) Mapping marine environments with IKONOS imagery: Enhanced spatial resolution can deliver greater thematic accuracy. Remote Sensing Environ 82(2):248–257CrossRefGoogle Scholar
  51. Mumby PJ, Skirving W, Strong AE, Hardy JT, LeDrew EF, Hochberg EJ, Stumpf RP, David LT (2004) Remote sensing of coral reefs and their physical environment. Marine Pollution Bull 48(3):219–228CrossRefGoogle Scholar
  52. Murray SP, Johns W (1997) Direct observations of seasonal exchange through the Bab el Mandab Strait. Geophys Res Lett 24(21):2557–2560CrossRefGoogle Scholar
  53. Quadfasel D, Baudner H (1993) Gyre-scale circulation cells in the Red-Sea. Oceanol Acta 16(3):221–229Google Scholar
  54. Rasul NMA, Stewart ICF, Nawab ZA (2015) Introduction to the Red Sea: Its origin, structure, and environment. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin Heidelberg, pp 1–28Google Scholar
  55. Reidenbach MA, Koseff JR, Monismith SG (2007) Laboratory experiments of fine-scale mixing and mass transport within a coral canopy. Phys Fluids 19:075107CrossRefGoogle Scholar
  56. Rowlands GP, Purkis SJ, Riegl BM (2008) The 2005 coral-bleaching event, Roatan (Honduras): Use of pseudo-invariant features (PIFs) in satellite assessments. J Spat Sci 53:99–112CrossRefGoogle Scholar
  57. Rowlands G, Purkis S, Riegl B, Metsamaa L, Bruckner A, Renaud P (2012) Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia. Marine Pollution Bull 64(6):1222–1237CrossRefGoogle Scholar
  58. Rushdi AI (2015) Calcite and aragonite saturation states of the Red Sea and biogeochemical impacts of excess carbon dioxide. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin Heidelberg, pp 267–279Google Scholar
  59. Sheppard CRC, Price ARG, Roberts C (1992) Marine Ecology of the Arabian region: Pattern and processes in extreme tropical environments. Academic Press, LondonGoogle Scholar
  60. Sofianos SS, Johns WE (2007) Observations of the summer Red Sea circulation. J Geophys Res Oceans 112:C6CrossRefGoogle Scholar
  61. Spalding M, Ravilious C, Green EP (2001) World atlas of coral reefs. Univ California PressGoogle Scholar
  62. Stocking JB, Rippe JP, Reidenbach MA (2016) Structure and dynamics of turbulent boundary layer flow over healthy and algae-covered corals. Coral Reefs 35(3):1047–1059CrossRefGoogle Scholar
  63. Swallow JC, Crease J (1965) Hot salty water at the bottom of the Red Sea. Nature 205:165–166CrossRefGoogle Scholar
  64. Yamano H, Tamura M (2004) Detection limits of coral reef bleaching by satellite remote sensing: Simulation and data analysis. Remote Sens Environ 90:86–103CrossRefGoogle Scholar
  65. Yudong Z, Shuihua W, Genlin J, Zhengchao D (2013) Genetic pattern search and its application to brain image classification. Math Prob Eng 2013: article 580876, 8 ppGoogle Scholar
  66. Werner F, Lange K (1975) A bathymetric survey of the sill area between the Red Sea and the Gulf of Aden. Geol Jahrb D13:125–130Google Scholar
  67. Zhang Y, Gong DW, Ding Z (2012) A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Information Sci 192:213–227CrossRefGoogle Scholar
  68. Zhang C (2015) Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem. ISPRS J Photogram Remote Sens 104:213–223CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Humanities, Geography SectionUniversity Sains Malaysia (USM)PenangMalaysia
  2. 2.Remote Sensing DepartmentSaudi Geological SurveyJeddahSaudi Arabia

Personalised recommendations