The Nature of Upper Mantle Upwelling During Initiation of Seafloor Spreading in the Southern Red Sea

  • Ryan GallacherEmail author
  • Derek Keir
  • Nicholas Harmon


The response of the mantle and specifically melt generation during the progression from continental to oceanic rifting is poorly understood due to an absence of direct observations. Specifically, it is unclear when during the rifting process the segmented nature of magma supply typical of seafloor spreading initiates. We have imaged the mantle beneath the southern Red Sea, Afar and the Main Ethiopian rift using Rayleigh-wave tomography. From this we have generated a high-resolution absolute 3-dimensional shear-wave velocity model of the upper 250 kilometres imaging the mantle response during the progression from continental rifting to seafloor spreading. We interpret segmented partial melt beneath the rifts based on observations of low seismic velocities and rift parallel anisotropy. The low velocities are likely formed by focusing of partial melt along the base of the lithosphere in addition to buoyancy driven active upwelling. The segmented anomalies are consistent in scale from the oceanic southern Red Sea rift to the continental Main Ethiopian, suggesting that mantle segmentation beneath oceanic rifts initiates early during continental rifting. The similarity between the observed mantle segmentation and mantle segmentation observed at oceanic rifts worldwide indicates that these interpretations may apply globally.



Funding was provided by NERC grants NE/E007414/1, NE/D008611/1, NE/J012297/1 and NE/I020342/1, NE/K500926/1, NE/L013932/1 and BHP-Billiton. We thank the Saudi Geological Survey for their invitation to participate in the Saudi Geological Survey Red Sea Workshop. We also thank the three anonymous reviewers who helped improve this chapter.


  1. Accardo NJ, Gaherty JB, Shillington DJ, Ebinger CJ, Nyblade AA, Mbogoni GJ, Chindandali PRN, Ferdinand RW, Mulibo GD, Kamihanda G, Keir D, Scholz C, Selway K, O’Donnell JP, Tepp G, Gallacher RJ, Mtelela K, Salima J, Mruma A (2017) Surface wave imaging of the weakly extended Malawi Rift from ambient-noise and teleseismic Rayleigh waves from onshore and lake-bottom seismometers. Geophys J Int 209:1892–1905CrossRefGoogle Scholar
  2. Ahmed A, Tiberi C, Leroy S, Stuart GW, Keir D, Sholan J, Khanbari K, Al-Ganad I, Basuyau C (2013) Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis. Geophys J Int 193:1673–1690CrossRefGoogle Scholar
  3. Ambraseys NN, Melvile CP, Adams RD (1994) The seismicity of Egypt, Arabia and the Red Sea. Cambridge University Press, Cambridge, UK, p 201CrossRefGoogle Scholar
  4. Armitage JJ, Collier JS, Minshull TA (2010) The importance of rift history for volcanic margin formation. Nature 465:913–917CrossRefGoogle Scholar
  5. Armitage JJ, Ferguson DJ, Goes S, Hammond JOS, Calais E, Rychert CA, Harmon N (2015) Upper mantle temperature and the onset of extension and break-up in Afar, Africa. Earth Planet Sci Lett 418:78–90CrossRefGoogle Scholar
  6. Barberi F, Varet J (1977) Volcanism of Afar: Small-scale plate tectonics implications. Bull Geol Soc Am 88:1251–1266CrossRefGoogle Scholar
  7. Backus G, Gilbert F (1968) The resolving power of gross earth data. Geophys J Int 16:169–205CrossRefGoogle Scholar
  8. Bastow ID, Nyblade AA, Stuart GW, Rooney TO, Benoit MH (2008) Upper mantle seismic structure beneath the Ethiopian hot spot: rifting at the edge of the African low-velocity anomaly. Geochem Geophys Geosyst 9:Q12022CrossRefGoogle Scholar
  9. Belachew M, Ebinger CJ, Coté D, Keir D, Rowland JV, Hammond JOS, Ayele A (2011) Comparison of dike intrusions in an incipient seafloor-spreading segment in Afar, Ethiopia: seismicity perspectives. J Geophys Res 116:B06405CrossRefGoogle Scholar
  10. Benoit MH, Nyblade AA, VanDecar JC (2006) Upper mantle P-wave speed variations beneath Ethiopia and the origin of the Afar hotspot. Geology 34:329–332CrossRefGoogle Scholar
  11. Blackman DK, Kendall JM (1997) Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid–ocean ridge. Phil Trans R Soc Lond 355:217–231CrossRefGoogle Scholar
  12. Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature 316:33–37CrossRefGoogle Scholar
  13. Bonatti E, Seyler M (1987) Crustal underplating and evolution in the Red Sea rift: Uplifted gabbro/gneiss crustal complexes on Zabargad and Brothers Islands. J Geophys Res 92:12803–12821CrossRefGoogle Scholar
  14. Bown JW, White RS (1995) Effect of finite extension rate on melt generation at rifted continental margins. J Geophys Res 100:18011–18029CrossRefGoogle Scholar
  15. Braun J, Beaumont C (1989) A physical explanation of the relation between flank uplifts and the breakup unconformity at rifted continental margins. Geology 17:760–764CrossRefGoogle Scholar
  16. Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52:289–300CrossRefGoogle Scholar
  17. Civiero C, Hammond JOS, Goes S, Fishwick S, Ahmed A, Ayele A, Doubre C, Goitom B, Keir D, Kendall J-M, Leroy S (2015) Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography. Geochem Geophys Geosyst 16:2949–2968CrossRefGoogle Scholar
  18. Corbeau J, Rolandone F, Leroy S, Al-Lazki A, Stork AL, Keir D, Stuart GW, Hammond JOS, Doubre C, Vergne J, Ahmed A (2014) Uppermost mantle velocity from Pn tomography in the Gulf of Aden. Geosphere 10:958–968CrossRefGoogle Scholar
  19. Corti G (2008) Control of rift obliquity on the evolution and segmentation of the main Ethiopian rift. Nat Geo 1:258–262CrossRefGoogle Scholar
  20. Corti G, Van Wijk J, Bonini M, Sokoutis D, Cloetingh S, Innocenti F, Manetti P (2003) Transition from continental break-up to punctiform seafloor spreading: how fast, symmetric and magmatic. Geophys Res Lett 30:1604CrossRefGoogle Scholar
  21. Dalton CA, Ekström G, Dziewoński AM (2008) The global attenuation structure of the upper mantle. J Geophys Res 113:B09303CrossRefGoogle Scholar
  22. Davison I, Al-Kadasi M, Al-Khirbash S, Al-Subbary AK, Baker J, Blakey S, Bosence D, Dart C, Heaton R, McClay K, Menzies M (1994) Geological evolution of the southeastern Red Sea Rift margin, Republic of Yemen. Bull Geol Soc Am 106:1474–1493CrossRefGoogle Scholar
  23. Debayle E, Ricard Y (2012) A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements. J Geophys Res 117:B10308CrossRefGoogle Scholar
  24. Delaney JR, Kelley DS, Lilley MD, Butterfield DA, Baross JA, Wilcock WSD, Embley RW, Summit M (1998) The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281:222–230CrossRefGoogle Scholar
  25. Ebinger CJ, Sleep NH (1998) Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395:788–791CrossRefGoogle Scholar
  26. Ebinger CJ, Belachew M (2010) Geodynamics: Active passive margins. Nature Geosci 3:670CrossRefGoogle Scholar
  27. Facenna C, Becker TW, Jolivet L, Keskin M (2013) Mantle convection in the Middle East: reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet Sci Lett 375:254–269CrossRefGoogle Scholar
  28. Ferguson DJ, Maclennan J, Bastow ID, Pyle DM, Jones SM, Keir D, Blundy JD, Plank T, Yirgu G (2013) Melting during late-stage rifting in Afar is hot and deep. Nature 499:70–73CrossRefGoogle Scholar
  29. Forsyth DW, Li A (2005) Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference. In: Levander A, Nolet G (eds) Seismic earth: Array analysis of broadband seismograms. Am Geophys Union Monograph 157, pp 81–97Google Scholar
  30. Gao SS, Liu KH, Abdelsalam MG (2010) Seismic anisotropy beneath the Afar depression and adjacent areas: implications for mantle flow. J Geophys Res 115:B12330CrossRefGoogle Scholar
  31. Gallacher RJ, Keir D, Harmon N, Stuart GW, Leroy S, Hammond JOS, Kendall JM, Ayele A, Goitom B, Ogubazghi G, Ahmed A (2016) The initiation of segmented buoyancy-driven melting during continental breakup. Nature Commun 7:13110CrossRefGoogle Scholar
  32. Hammond WC, Humphreys ED (2000) Upper mantle seismic wave velocity: effects of realistic partial melt geometries. J Geophys Res 105:10975–10986CrossRefGoogle Scholar
  33. Hammond JOS, Kendall J-M, Stuart GW, Keir D, Ebinger CJ, Ayele A, Belachew M (2011) The nature of the crust beneath the Afar triple junction: evidence from receiver functions. Geochem Geophys Geosyst 12:Q12004CrossRefGoogle Scholar
  34. Hammond JOS, Kendall JM, Stuart GW, Ebinger CJ, Bastow ID, Keir D, Ayele A, Belachew M, Goitom B, Ogubazghi G, Wright TJ (2013) Mantle upwelling and initiation of rift segmentation beneath the Afar depression. Geology 41:635–638CrossRefGoogle Scholar
  35. Hammond JOS, Kendall JM, Wookey J, Stuart GW, Keir D, Ayele A (2014) Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia. Geochem Geophys Geosyst 15:1878–1894CrossRefGoogle Scholar
  36. Hansen S, Schwartz S, Al-Amri A, Rodgers A (2006) Combined plate motion and density-driven flow in the asthenosphere beneath Saudi Arabia: Evidence from shear-wave splitting and seismic anisotropy. Geology 34:869–872CrossRefGoogle Scholar
  37. Hansen SE, Nyblade AA, Benoit MH (2012) Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: implications for the origin of Cenozoic Afro-Arabian tectonism. Earth Planet Sci Lett 319:23–34CrossRefGoogle Scholar
  38. Hayward NJ, Ebinger CJ (1996) Variations in the along-axis segmentation of the Afar Rift system. Tectonics 15:244–257CrossRefGoogle Scholar
  39. Holtzman BK, Kohlstedt DL, Zimmerman ME, Heidelbach F, Hiraga T, Hustoft J (2003) Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science 301:1227–1230CrossRefGoogle Scholar
  40. Holtzman BK, Kendall JM (2010) Organized melt, seismic anisotropy, and plate boundary lubrication. Geochem Geophys Geosyst 11:Q0AB06CrossRefGoogle Scholar
  41. Hopper JR, Funck T, Tucholke BE, Larsen HC, Holbrook WS, Louden KE, Shillington D, Lau H (2004) Continental breakup and the onset of ultraslow seafloor spreading off Flemish Cap on the Newfoundland rifted margin. Geology 32:93–96CrossRefGoogle Scholar
  42. Huerta AD, Nyblade AA, Reusch AM (2009) Mantle transition zone structure beneath Kenya and Tanzania: More evidence for a deep-seated thermal upwelling in the mantle. Geophys J Int 177:1249–1255CrossRefGoogle Scholar
  43. Keir D, Hamling IJ, Ayele A, Calais E, Ebinger CJ, Wright TJ, Jacques E, Mohamed K, Hammond JOS, Belachew M, Baker E (2009) Evidence for focused magmatic accretion at segment centers from lateral dike injections captured beneath the Red Sea rift in Afar. Geology 37:59–62CrossRefGoogle Scholar
  44. Keir D, Belachew M, Ebinger CJ, Kendall JM, Hammond JOS, Stuart GW, Ayele A, Rowland JV (2011) Mapping the evolving strain field during continental breakup from crustal anisotropy in the Afar Depression. Nature Commun 2:285CrossRefGoogle Scholar
  45. Kendall JM, Stuart GW, Ebinger CJ, Bastow ID, Keir D (2005) Magma-assisted rifting in Ethiopia. Nature 433:146–148CrossRefGoogle Scholar
  46. Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from travel times. Geophys J Int 122:108–124CrossRefGoogle Scholar
  47. King SD, Anderson DL (1995) An alternative mechanism of flood basalt formation. Earth Planet Sci Lett 136:269–279CrossRefGoogle Scholar
  48. King SD, Anderson DL (1998) Edge-driven convection. Earth Planet Sci Lett 160:289–296CrossRefGoogle Scholar
  49. Korostelev F, Basuyau C, Leroy S, Tiberi C, Ahmed A, Stuart GW, Keir D, Rolandone F, Ganad I, Khanbari K, Boschi L (2014) Crustal and upper mantle structure beneath south-western margin of the Arabian Peninsula from teleseismic tomography. Geochem Geophys Geosyst 15:2850–2864CrossRefGoogle Scholar
  50. Landisman M, Dziewonski A, Sato Y (1969) Recent improvements in the analysis of surface wave observations. Geophys J R Astr Soc 17:369–403CrossRefGoogle Scholar
  51. Langmuir CH, Bender JF, Batiza R (1986) Petrological and tectonic segmentation of the East Pacific Rise, 5°30′–14°30′ N. Nature 322:422–429CrossRefGoogle Scholar
  52. Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0—a 1-degree global model of Earth’s crust. EGU General Assembly 2013, Geophys Res Abstr 15, EGU2013–2658Google Scholar
  53. Leroy S, Lucazeau F, d’Acremont E, Watremez L, Autin J, Rouzo S, Bellahsen N, Tiberi C, Ebinger C, Beslier MO, Perrot J (2010) Contrasted styles of rifting in the eastern Gulf of Aden: A combined wide-angle, multichannel seismic, and heat flow survey. Geochem Geophys Geosyst 11:Q07004CrossRefGoogle Scholar
  54. Levshin AL, Yanovskaya TB, Lander AV, Bukchin BG, Barmin MP, Ratnikova LI, Its EN (1989) Recording identification and measurements of surface wave parameters. In: Keilis-Borok VI (ed) Seismic surface waves in laterally inhomogeneous earth. Kluwer Academic Publishers, Dordrecht, pp 131–182Google Scholar
  55. Lewi E, Keir D, Birhanu Y, Blundy J, Stuart G, Wright T, Calais E (2016) Use of a high-precision gravity survey to understand the formation of oceanic crust and the role of melt at the southern Red Sea rift in Afar, Ethiopia. Geol Soc Spec Publ 420:165–180CrossRefGoogle Scholar
  56. Ligi M, Bonatti E, Tontini FC, Cipriani A, Cocchi L, Schettino A, Bortoluzzi G, Ferrante V, Khalil S, Mitchell NC, Rasul N (2011) Initial burst of oceanic crust accretion in the Red Sea due to edge-driven mantle convection. Geology 39:1019–1022CrossRefGoogle Scholar
  57. Ligi M, Bonatti E, Bortoluzzi G, Cipriani A, Cocchi L, Caratori Tontini F, Carminati E, Ottolini L, Schettino A (2012) Birth of an ocean in the Red Sea: initial pangs. Geochem Geophys Geosyst 13:Q08009CrossRefGoogle Scholar
  58. Lizarralde D, Axen GJ, Brown HE, Fletcher JM, González-Fernández A, Harding AJ, Holbrook WS, Kent GM, Paramo P, Sutherland F, Umhoefer PJ (2007) Variation in styles of rifting in the Gulf of California. Nature 448:466–469CrossRefGoogle Scholar
  59. Madge LS, Sparks DW (1997) Three-dimensional mantle upwelling, melt generation, and melt migration beneath segment slow spreading ridges. J Geophys Res 102:20571–20583CrossRefGoogle Scholar
  60. Mackenzie GD, Thybo H, Maguire PK (2005) Crustal velocity structure across the Main Ethiopian Rift: Results from two-dimensional wide-angle seismic modeling. Geophys J Int 162:994–1006CrossRefGoogle Scholar
  61. Maguire PKH, Keller GR, Klemperer SL, Mackenzie GD, Keranen K, Harder S, O’Reilly B, Thybo H, Asfaw L, Khan MA, Amha M (2006) Crustal structure of the northern Main Ethiopian Rift from the EAGLE controlled-source survey; a snapshot of incipient lithospheric break-up. Geol Soc Spec Publ 259:269–292CrossRefGoogle Scholar
  62. Makris J, Ginzburg A (1987) The Afar depression: transition between continental rifting and sea-floor spreading. Tectonophysics 141:199–214CrossRefGoogle Scholar
  63. Manighetti I, Tapponnier P, Gillot PY, Jacques E, Courtillot V, Armijo R, Ruegg JC, King G (1998) Propagation of rifting along the Arabia-Somalia plate boundary: Into Afar. J Geophys Res 103:4947–4974CrossRefGoogle Scholar
  64. McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32CrossRefGoogle Scholar
  65. Niu Y, Bideau D, Hekinian R, Batiza R (2001) Mantle composition control on the extent of mantle melting, crust production, gravity anomaly, ridge morphology, and ridge segmentation: a case study at the Mid-Atlantic Ridge 33–35°N. Earth Planet Sci Lett 186:383–399CrossRefGoogle Scholar
  66. Owens TJ, Nyblade AA, Gurrola H, Langston CA (2000) Mantle transition zone structure beneath Tanzania, East Africa. Geophys Res Lett 27:827–830CrossRefGoogle Scholar
  67. Park Y, Nyblade AA, Rodgers AJ, Al-Amri A (2007) Upper mantle structure beneath the Arabian Peninsula and northern Red Sea from teleseismic body wave tomography: implications for the origin of Cenozoic uplift and volcanism in the Arabian Shield. Geochem Geophys Geosyst 8:Q06021CrossRefGoogle Scholar
  68. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Simulated annealing methods. In: Numerical recipes in C: the art of scientific computing (2nd edn). Cambridge University Press, pp 444–455Google Scholar
  69. Rooney TO, Herzberg C, Bastow ID (2012) Elevated mantle temperature beneath East Africa. Geology 40:27–30CrossRefGoogle Scholar
  70. Rowland JV, Wilson CJ, Gravley DM (2010) Spatial and temporal variations in magma-assisted rifting, Taupo Volcanic Zone, New Zealand. J Volc Geotherm Res 190:89–108CrossRefGoogle Scholar
  71. Rychert CA, Hammond JOS, Harmon N, Kendall JM, Keir D, Ebinger C, Bastow ID, Ayele A, Belachew M, Stuart G (2012) Volcanism in the Afar rift sustained by decompression melting with minimal plume influence. Nature Geosci 5:406–409CrossRefGoogle Scholar
  72. Saito M (1988) DISPER80: A subroutine package for the calculation of seismic normal-mode solutions. In: Doornbos DJ (ed) Seismological algorithms: computational methods and computer programs. Academic Press, New York, pp 293–319Google Scholar
  73. Schaeffer AJ, Lebedev S (2013) Global shear speed structure of the upper mantle and transition zone. Geophys J Int 194:417–449CrossRefGoogle Scholar
  74. Schouten H, Klitgord KD, Whitehead JA (1985) Segmentation of mid-ocean ridges. Nature 317:225–229CrossRefGoogle Scholar
  75. Sebai A, Stutzmann E, Montagner J, Sicilia D, Beucler E (2006) Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography. Phys Earth Planet Int 155:48–62CrossRefGoogle Scholar
  76. Sempere JC, Lin J, Brown HS, Schouten H, Purdy GM (1993) Segmentation and morphotectonic variations along a slow-spreading center: The Mid-Atlantic Ridge (24°00′ N–30°40′ N). Mar Geophys Res 15:153–200CrossRefGoogle Scholar
  77. Shapiro NM, Ritzwoller MH (2002) Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys J Int 151:88–105CrossRefGoogle Scholar
  78. Shillington DJ, Scott CL, Minshull TA, Edwards RA, Brown PJ, White N (2009) Abrupt transition from magma-starved to magma-rich rifting in the eastern Black Sea. Geology 37:7–10CrossRefGoogle Scholar
  79. Sicilia D, Montagner JP, Cara M, Stutzmann E, Debayle E, Lépine JC, Lévêque JJ, Beucler E, Sebai A, Roult G, Ayele A (2008) Upper mantle structure of shear-waves velocities and stratification of anisotropy in the Afar Hotspot region. Tectonophysics 462:164–177CrossRefGoogle Scholar
  80. Stork AL, Stuart GW, Henderson CM, Keir D, Hammond JOS (2013) Uppermost mantle (Pn) velocity model for the Afar region, Ethiopia: an insight into rifting processes. Geophys J Int 193:321–328CrossRefGoogle Scholar
  81. Tarantola A, Valette B (1982) Generalized nonlinear inverse problems solved using the least squares criterion. Rev Geophys 20:219–232CrossRefGoogle Scholar
  82. Taylor B, Goodliffe A, Martinez F, Hey R (1995) Continental rifting and initial sea-floor spreading in the Woodlark basin. Nature 374:534–537CrossRefGoogle Scholar
  83. Thompson DA, Hammond JOS, Kendall J-M, Stuart GW, Helffrich GR, Keir D, Ayele A, Goitom B (2015) Hydrous upwelling across the mantle transition zone beneath the Afar Triple junction. Geochem Geophys Geosyst 16:834–846CrossRefGoogle Scholar
  84. Tiberi C, Ebinger CJ, Ballu V, Stuart G, Oluma B (2005) Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone. Geophys J Int 163:775–787CrossRefGoogle Scholar
  85. Wang Y, Forsyth DW, Savage B (2009) Convective upwelling in the mantle beneath the Gulf of California. Nature 462:499–501CrossRefGoogle Scholar
  86. Weissel JK, Karner GD (1989) Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. J Geophys Res 94:13919–13950CrossRefGoogle Scholar
  87. White RS, McKenzie D (1989) Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729CrossRefGoogle Scholar
  88. White RS, Smith LK, Roberts AW, Christie PAF, Kusznir NJ (2008) Lower-crustal intrusion on the North Atlantic continental margin. Nature 452:460–464CrossRefGoogle Scholar
  89. Wolfe CJ, Vernon FJ, Al-Amri A (1999) Shear-wave splitting across western Saudi Arabia: The pattern of upper mantle anisotropy at a Proterozoic shield. Geophys Res Lett 26:779–782CrossRefGoogle Scholar
  90. Wolfenden E, Ebinger CJ, Yirgu G, Deino A, Ayalew D (2004) Evolution of the northern Main Ethiopian rift: birth of a triple junction. Earth Planet Sci Lett 224:213–228CrossRefGoogle Scholar
  91. Xu W, Ruch J, Jónsson S (2014) Birth of two volcanic islands in the southern Red Sea. Nature Commun 6:7104CrossRefGoogle Scholar
  92. Yang Y, Forsyth DW (2006) Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels. Geophys J Int 166:1148–1160CrossRefGoogle Scholar
  93. Zhou Y, Dahlen FA, Nolet G (2004) Three-dimensional sensitivity kernels for surface wave observables. Geophys J Int 158:142–168CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesTulane UniversityNew OrleansUSA
  2. 2.National Oceanography Centre Southampton, University of SouthamptonSouthamptonUK
  3. 3.Dipartimento di Scienze della TerraUniversita Degli Studi di FirenzeFlorenceItaly

Personalised recommendations