Constraining the Opening of the Red Sea: Evidence from the Neoproterozoic Margins and Cenozoic Magmatism for a Volcanic Rifted Margin

  • Robert J. SternEmail author
  • Peter R. Johnson


As the Earth’s best-known example of an active, incipient ocean basin, the Red Sea provides crucial information about continental rifting and the tectonic transition from extended continental crust to seafloor spreading. Study of the Red Sea over the past decades has given many answers, but significant questions remain about how and when it opened because of lacking or ambiguous data and thick salt cover. A key issue is the geometry of the pre-rift join between the Arabian and Nubian Shields that form the basement flanking the Red Sea because this constrains the nature of Red Sea crust. The Neoproterozoic basement rocks flanking the Red Sea contain prominent shears and sutures between amalgamated tectonostratigraphic terranes, regions of transpressional shortening, and brittle-ductile faults related to Ediacaran orogenic collapse and tectonic escape. These structures vary in orientation from orthogonal to oblique with respect to the Red Sea coastlines. Importantly, they correlate across the Red Sea, and provide piercing points for a near coast-to-coast palinspastic reconstruction of the Arabian and Nubian Plates along the entire Red Sea. A tight pre-rift fit of the Arabian and Nubian Shields implies that most of the Red Sea is underlain by oceanic crust. Potential-field data are compelling evidence for oceanic crust along the axis of the Red Sea south of latitude ~22°N, persuasive for the margins of the southern Red Sea, and suggestive for the northern Red Sea. A variety of 20–24 Ma dikes, gabbros, and basaltic flows emplaced during the early stages of Red Sea rifting are consistent with Miocene asthenospheric upwelling, partial melting, and intrusion that would have weakened and facilitated rupture of the ~40-km thick continental crust and thicker mantle lithosphere of the then contiguous Arabian and Nubian Shields. The dikes, gabbros, and basaltic flows emplaced during the early stages of Red Sea rifting are strong evidence furthermore that the Red Sea is an example of a volcanic-rifted margin. Offshore seismic profiling designed to image beneath the salt followed by drilling to basement in the Red Sea are required to test these ideas.



We are grateful to Dr. Zohair Nawab and Dr. Najeeb Rasul of the Saudi Geological Survey for organizing the second workshop on the Red Sea in Jeddah in 2016 that gave us the occasion to consolidate our ideas about the initiation of the Red Sea and thank Springer-Verlag for publishing this paper as part of the workshop proceedings. We greatly appreciate the critical comments and suggestions of three anonymous referees. This is UTD Geosciences contribution # 1299.


  1. Abd El-Gawad M (1970) Interpretation of satellite photographs of the Red Sea and Gulf of Aden (with discussion). In: A discussion of the structure and evolution of the Red Sea and the nature of the Red Sea, Gulf of Aden and Ethiopia rift junction. Phil Trans R S London Ser A 267:23–40Google Scholar
  2. Abd El-Naby H, Frisch W, Siebel W (2008) Tectono-metamorphic evolution of the Wadi Hafafit Culmination (central Eastern Desert, Egypt). Implication for Neoproterozoic core complex exhumation in NE Africa. Geol Acta 6:293–312Google Scholar
  3. Abd El-Wahed M, Ashmawy M, Tawfik H (2010) Structural setting of Cretaceous pull-part basins and Miocene extensional folds in the Quseir-Umm Gheig region, northwestern Red Sea, Egypt. Lithosphere 2:13–32CrossRefGoogle Scholar
  4. Abdelsalam MG (1994) The Oko shear zone: post-accretionary deformations in the Arabian Nubian Shield. J Geol Soc London 151:767–776CrossRefGoogle Scholar
  5. Abdelsalam MG (2010) Quantifying 3D post-accretionary tectonic strain in the Arabian-Nubian Shield: superimposition of the Oko Shear Zone on the Nakasib Suture, Red Sea Hills, Sudan. J Afr Earth Sci 56:167–178CrossRefGoogle Scholar
  6. Abdelsalam MG, Stern RJ (1993) Tectonic evolution of the Nakasib suture, Red Sea Hills, Sudan: evidence for a late Precambrian Wilson cycle. J Geol Soc London 150:393–404CrossRefGoogle Scholar
  7. Abdelsalam MG, Stern RJ (1996) Sutures and shear zones in the Arabian-Nubian Shield. J Afr Earth Sci 23:289–310CrossRefGoogle Scholar
  8. Abdelsalam MG, Liégeois JP, Stern RJ (2002) The saharan metacraton. J Afr Earth Sci 34:119–136CrossRefGoogle Scholar
  9. Abu-Alam T, Stüwe K, Kadi K (2011) Pan-African exhumation mechanisms. Geophys Res Abstracts, EGU General Assembly 13:EGU2011-10307-1Google Scholar
  10. Ali KA, Azer MK, Gahlan HA, Wilde SA, Samuel MD, Stern RJ (2010) Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi-Heiani Suture, Southeastern Desert of Egypt. Gondwana Res 18:583–595CrossRefGoogle Scholar
  11. Andresen A, Abu El-Rus MA, Myhre PI, Boghdady GY, Corfu F (2009) U-Pb TIMS age constraints on the evolution of the Neoproterozoic Meatiq Gneiss Dome, Eastern desert, Egypt. Int J Earth Sci 98(3):481–497. Scholar
  12. Andresen A, Augland LE, Boghdady GY, Lundmark AM, Elnady OM, Hassan MA (2010) Structural constraints on the evolution of the Meatiq gneiss domes (Egypt), East-African Orogen. J Afr Earth Sci 57:413–422CrossRefGoogle Scholar
  13. Avigad D, Gvirtzman Z (2009) Late Neoproterozoic rise and fall of the northern Arabian-Nubian Shield: the role of lithospheric mantle delamination and subsequent thermal subsidence. Tectonophysics 477:217–228CrossRefGoogle Scholar
  14. Azer M, Stern RJ (2007) Neoproterozoic serpentinites in the Eastern Desert, Egypt: fragments of fore-arc mantle. J Geol 115:457–472CrossRefGoogle Scholar
  15. Bennett GD, Mosely P (1987) Tiered tectonics and evolution, Eastern Desert and Sinai, Egypt. In: Matheis G, Schandelmeier H (eds) Current research in African Earth sciences. Balkema, Rotterdam, The Netherlands, pp 79–82Google Scholar
  16. Beyth M, Stern RJ, Matthews A (1977) Significance of high-grade metasediments from the Neoproterozoic basement of Eritrea. Precambrian Res 86:45–58CrossRefGoogle Scholar
  17. Bialas RW, Buck WR, Qin R (2010) How much magma is required to rift a continent? Earth Planet Sci Lett 292:68–78CrossRefGoogle Scholar
  18. Blank HR, Mooney WD, Healy JH, Gettings MA, Lamson RJ (1986) A seismic refraction interpretation of the eastern margin of the Red Sea depression, Southwest Saudi Arabia. US Geological Survey Open-file Report 86–257, 24 pGoogle Scholar
  19. Blank HR, Johnson PR, Gettings ME, Simmons GC (1987) Geologic map of the Jizan quadrangle, Sheet 16F, Kingdom of Saudi Arabia. Saudi Arabian Directorate General of Mineral Resources Geoscience Map GM-104Google Scholar
  20. Blasband B, White S, Brooijmans P, De Broorder H, Visser W (2000) Late Proterozoic extensional collapse in the Arabian-Nubian Shield. J Geol Soc London 157:615–628CrossRefGoogle Scholar
  21. Bohannon RG (1989) Style of extensional tectonism during rifting, Red Sea and Gulf of Aden. J Afr Earth Sci 8:589–602CrossRefGoogle Scholar
  22. Bonatti E (1985) Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. Nature 316:33–37Google Scholar
  23. Bonatti E, Cipriani A, Lupi L (2015) The Red Sea: birth of an ocean. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 29–44. Scholar
  24. Bosworth W (2015) Geological evolution of the Red Sea: historical background, review, and synthesis. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 45–78. Scholar
  25. Bosworth W, Stockli DF (2016) Early magmatism in the greater Red Sea rift: timing and significance. Canadian J Earth Sci. Scholar
  26. Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afr Earth Sci 43:334–378CrossRefGoogle Scholar
  27. Brueckner HK, Bonatti E, Elhaddad MA, Hamelin B, Kröner A, Reisberg L, Seyler M (1996) A Nd, Sr, Pb and Os study of the gneisses and ultramafic rocks of Zabargad Island, Red Sea: Miocene Moho or Pan African peridotites. J Geophys Res 100(B11):22283–22297CrossRefGoogle Scholar
  28. Burke K, Sengor C (1985) Tectonic escape in the evolution of the continental crust. In: Barazangi M, Brown L (eds) Reflection seismology: the continental crust. American geophysical union geodynamics series, vol 14, pp 41–53CrossRefGoogle Scholar
  29. Claesson S, Pallister JS, Tatsumoto M (1984) Samarium-neodymium data on two late Proterozoic ophiolites of Saudi Arabia and implications for crustal and mantle evolution. Contrib Mineral Petrol 85:244–252CrossRefGoogle Scholar
  30. Cochran JR (1983) A model for development of Red Sea. Bull Am Assoc Petrol Geol 67:41–69Google Scholar
  31. Cochran JR, Martinez F (1988) Evidence from the northern Red Sea on the transition from continental to oceanic rifting. Tectonophysics 153:25–53CrossRefGoogle Scholar
  32. Coleman RG (1993) Geologic evolution of the Red Sea. Oxford Monographs on Geology and Geophysics. Oxford University Press, New York, 186 pGoogle Scholar
  33. Coleman RG, Brown GF, Keith TEC (1972) Layered gabbros in southwest Saudi Arabia. U.S. Geological Survey Professional Paper 800-D:D143–D150Google Scholar
  34. Coleman RG, Hadley DG, Fleck RJ, Hedge CT, Donato MM (1979) The Miocene Tihama Asir ophiolite and its bearing on the opening of the Red Sea. In: Al-Shanti AMS (ed) Evolution and mineralization of the Arabian-Nubian Shield. Pergamon Press, New York, pp 173–187CrossRefGoogle Scholar
  35. Collenette P, Grainger DJ (1994) Kyanite and andalusite. In: Collenette P, Grainger DJ (eds) Mineral resources of Saudi Arabia. Saudi Arabian Directorate General of Mineral Resources DGMR Special Publication SP2, pp 149–155Google Scholar
  36. d’Almeida GAF (2010) Structural evolution history of the Red Sea rift. Geotectonics 44:271–282CrossRefGoogle Scholar
  37. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80CrossRefGoogle Scholar
  38. DGMR (1977) Red Sea research 1970–1975. In: Saudi Arabian directorate general of mineral resources bulletin, vol 22, 223 pGoogle Scholar
  39. Dixon TH, Ivins ER, Franklin BJ (1989) Topographic and volcanic asymmetry around the Red Sea: constraints on rift models. Tectonics 8:1193–1216CrossRefGoogle Scholar
  40. Drury SA, de Souza Filho CR (1988) Neoproterozoic terrane assemblages in Eritrea: review and prospects. J Afr Earth Sci 27:331–348CrossRefGoogle Scholar
  41. Duncan IJ, Rivard B, Arvidson RE, Sultan M (1990) Structural interpretation and tectonic evolution of the Najd Shear Zone (Saudi Arabia) using Landsat thematic-mapper data. Tectonophysics 178:309–315CrossRefGoogle Scholar
  42. El-Gaby S, List FK, Tehrani R (1988) Geology, evolution and metallogenesis of the Pan-African Belt in Egypt. In: El Gaby S, Greiling R (eds) The Pan-African Belt of NE Africa and adjacent areas, tectonic evolution and economic aspects. Vieweg, Braunschweig, Wiesbaden, pp 17–68Google Scholar
  43. El-Gaby S, List FK, Tehrani R (1990) The basement complex of the Eastern Desert and Sinai. In: Said R (ed) The geology of Egypt. Balkema, Rotterdam, pp 175–184Google Scholar
  44. Fritz H, Dallmeyer DR, Wallbrecher E, Loizenbauer J, Hoinkes G, Neumayr P, Khudeir AA (2002) Neoproterozoic tectonothermal evolution of the Central Eastern Desert, Egypt: a slow velocity tectonic process of core complex exhumation. J Afr Earth Sci 34:137–155CrossRefGoogle Scholar
  45. Fritz H, Abdelsalam M, Ali K, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson P, Kusky T, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East African Orogens: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106CrossRefGoogle Scholar
  46. Gaina C, Gernigon L, Bail P (2009) Palaeocene-recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent. J Geol Soc London 66:606–616Google Scholar
  47. Gettings ME, Blank HR, Mooney WD, Healey JH (1986) Crustal structure of southwestern Saudi Arabia. J Geophys Res 91:6491–6512CrossRefGoogle Scholar
  48. Ghebreab W, Talbot CJ, Page L (2005) Time constraints on exhumation of the East African Orogen from field observations and 40Ar/39Ar cooling ages of low-angle mylonites in Eritrea, NE Africa. Precamb Res 139:20–41CrossRefGoogle Scholar
  49. Gillman M (1968) Preliminary results of a geological and geophysical reconnaissance of the Jizan coastal plain in Saudi Arabia. In: AIME regional tech symposium rep 2d, Dhahran, pp 198–208Google Scholar
  50. Girdler RW (1970) A review of Red Sea heat flow. Phil Trans R Soc Ser A 267:191–203CrossRefGoogle Scholar
  51. Girdler RW, Evans TR (1977) Red Sea heat flow. Geophys J R Astron Soc 51:245–252CrossRefGoogle Scholar
  52. Girdler RW, Styles P (1974) Two stage seafloor spreading. Nature 247:7–11CrossRefGoogle Scholar
  53. Golan, T, Katzir Y, Coble MA (2017) Early Carboniferous anorogenic magmatism in the Levant: implications for rifting in northern Gondwana. Int Geol Rev 60. Scholar
  54. Goldberg M, Beyth M (1991) Tiran Island: an internal block at the junction of the Red Sea and Dead Sea transform. Tectonophysics 198:261–273CrossRefGoogle Scholar
  55. Greenwood WR, Anderson RE (1977) Palinspastic map of the Red Sea area prior to Miocene sea-floor spreading. In: Saudi Arabian directorate general of mineral resources bulletin, vol 22, pp Q1–Q6Google Scholar
  56. Habib ME, Ahmed AA, El Nady OM (1985) Tectonic evolution of the Meatiq infrastructure, Central Eastern Desert, Egypt. Tectonics 4:613–627CrossRefGoogle Scholar
  57. Hall SA (1989) Magnetic evidence for the nature of the crust beneath the southern Red Sea. J Geophys Res 94:12267–12279CrossRefGoogle Scholar
  58. Hall SA, Andresen GE, Girdler RW (1977) Total-intensity magnetic anomaly map of the Red Sea and adjacent coastal area, a description and preliminary interpretation. In: Saudi Arabia directorate general of mineral resources bulletin, vol 22, pp F1–F13Google Scholar
  59. Hamimi Z, El-Sawy EK, El-Fakharani A, Matsah M, Shujoon A, El-Shafei MK (2014) Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia. J Afr Earth Sci 99:51–63CrossRefGoogle Scholar
  60. Handy MR, Brun J-P (2004) Seismicity, structure and strength of the continental lithosphere. Earth Planet Sci Lett 223:427–441CrossRefGoogle Scholar
  61. Hansen S, Schwartz S, Al-Amri A, Rodgers A (2006) Combined plate motion and density-driven flow in the asthenosphere beneath Saudi Arabia: evidence from shear-wave splitting and seismic anisotropy. Geology 34:869–872CrossRefGoogle Scholar
  62. Hansen SE, Rodgers AJ, Schwartz SY, Al-Amri AMS (2007) Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula. Earth Planet Sci Lett 259:256–265CrossRefGoogle Scholar
  63. Hargrove US (2006) Crustal evolution of the Neoproterozoic Bi’r Umq suture zone, Kingdom of Saudi Arabia. Geochronological, isotopic, and geochemical constraints. Unpublished PhD thesis, University of Texas at Dallas, 343 pGoogle Scholar
  64. Hosny A, Nyblade A (2016) Crustal structure of Egypt from Egyptian National Seismic Network data. Tectonophysics 687:257–267CrossRefGoogle Scholar
  65. Ilani S, Harlavan Y, Tarawneh K, Rabba I, Weinberger R, Ibrahim K, Peltz S, Steinitz G (2001) New K-Ar ages of basalts from the Harrat ash Shaam volcanic field in Jordan: implications for the span and duration of the upper-mantle upwelling beneath the western Arabian plate. Geology 29:171–174CrossRefGoogle Scholar
  66. Jackson J (2002) Strength of the continental lithosphere: time to abandon the jelly sandwich? GSA Today, September, pp 4–9CrossRefGoogle Scholar
  67. Japsen P, Chalmers JA, Green PF, Bonow JM (2011) Elevated, passive continental margins: not rift shoulders, but expressions of episodic, post-rift burial and exhumation. Glob Planet Change. Scholar
  68. Johnson PR, Andersen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232CrossRefGoogle Scholar
  69. Kearey P, Klepeis KA, Vine FJ (2009) Global tectonics. Wiley-Blackwell, Chichester, UK, p 482Google Scholar
  70. Kennedy A, Kozdroj W, Kattan FH, Kodzroj MZ, Johnson PR (2010) SHRIMP geochronology in the Arabian Shield (Midyan terrane, Afif terrane, Ad Dawadimi terrane) and Nubian Shield (Central Eastern Desert terrane) Part IV: data acquisition 2008. Saudi Geological Survey Open-File Report SGSOF-2010–10, 101 pGoogle Scholar
  71. Khalil SM, McClay KR (2001) Tectonic evolution of the NW Red Sea-Gulf of Suez rift system. Geol Soc Spec Publ London 187:453–473CrossRefGoogle Scholar
  72. Khalil SM, McClay KR (2002) Extensional fault-related folding, northwestern Red Sea. Egypt. J Struc Geol 24:743–762CrossRefGoogle Scholar
  73. Kozdroj W, Kattan FH, Kadi KA, Al Alfy ZFA, Oweiss KA, Mansour MM (2011) SGS-EMRA Project for Trans-Red Sea Correlation between the Central Eastern Desert Terrane (Egypt) and Midyan Terrane (Saudi Arabia). Saudi Geological Survey Open-File Report SGS-TR-2011-5Google Scholar
  74. Kusznir NJ, Park RG (1987) The extensional strength of continental lithosphere: its dependence on geothermal gradient and crustal thickness and composition. Geol Soc Spec Publ London 28:35–52CrossRefGoogle Scholar
  75. Lazar M, Ben-Avraham Z, Garfunkel Z (2012) The Red Sea—new insights from recent geophysical studies and the connection to the Dead Sea fault. J Afr Earth Sci 68:96–110CrossRefGoogle Scholar
  76. Levin V, Park J (2000) Shear zones in the Proterozoic lithosphere of the Arabian Shield and the nature of the Hales discontinuity. Tectonophysics 323:131–148CrossRefGoogle Scholar
  77. Ligi M, Bonatti E, Bortoluzzi G, Cipriani A, Cocchi L, Tontini FC, Carminati E, Ottolini L, Schettino A (2012) Birth of an ocean in the Red Sea: initial pangs. Geochem Geophys Geosyst 13. Scholar
  78. Ligi M, Bonatti E, Rasul NMA (2015) Seafloor spreading initiation: geophysical and geochemical constraints from the Thetis and Nereus deeps, central Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 79–98. Scholar
  79. Manatschal G (2004) New models for evolution of magma-poor rifted margins based on a review of data and concepts from west Iberia and the Alps. Int J Earth Sci 93:432–466CrossRefGoogle Scholar
  80. Martinez F, Cochran JR (1988) Structure and tectonics of the northern Red Sea: catching a continental margin between rifting and drifting. Tectonophysics 150:1–31CrossRefGoogle Scholar
  81. McGuire AV, Coleman RG (1986) The Jabal Tirf layered gabbro and associated rocks of the Tihama Asir Complex, SW Saudi Arabia. J Geol 94:651–665CrossRefGoogle Scholar
  82. McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci 40:25–32CrossRefGoogle Scholar
  83. Meinhold G, Morton AC, Avigad D (2013) New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U-Pb ages. Gondwana Res 23:661–665CrossRefGoogle Scholar
  84. Menzies MA, Klemperer SL, Ebinger CJ, Baker J (2002) Characteristics of volcanic rifted margins. Geol Soc Am Spec Paper 362:1–14Google Scholar
  85. Meyer SE, Passchier C, Abu-Alam T, Stüwe K (2014) A strike-slip core complex from the Najd fault system, Arabian Shield. Terra Nova 26:387–394CrossRefGoogle Scholar
  86. Miller MM, Dixon TH (1992) Late Proterozoic evolution of the N part of the Hamisana zone, NE Sudan: constraints on Pan-African accretionary tectonics. J Geol Soc London 149:743–750CrossRefGoogle Scholar
  87. Mooney WD, Gettings ME, Blank HR, Healy JH (1985) Saudi Arabian seismic-refraction profile: a traveltime interpretation of crustal and upper mantle structure. Tectonophysics 111:173–246CrossRefGoogle Scholar
  88. Mutter JC, Talwani M, Stoffa PL (1982) Origin of seaward-dipping reflectors in oceanic crust off the Norwegian margin by “subaerial sea-floor spreading”. Geology 10:353–357CrossRefGoogle Scholar
  89. Orszag-Sperber F, Harwood G, Kendall A, Purser BH (1998) A Review of the Evaporites of the Red Sea-Gulf of Suez rift. In: Purser BH, Bosence DWJ (eds) Sedimentation and Tectonics of Rift Basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 409–426CrossRefGoogle Scholar
  90. Pallister JS (1986) Geologic map of the Al Lith Quadrangle, Sheet 20D, Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources Geoscience Map GM-95Google Scholar
  91. Pallister JS (1987) Magmatic History of Red Sea rifting: perspectives from the central Saudi Arabian coastal plain. Geol Soc Am Bull 98:400–417CrossRefGoogle Scholar
  92. Pallister JS, Stacey JS, Fischer LB, Premo WR (1988) Precambrian ophiolites of Arabia: geologic settings, U-Pb geochronology, Pb-isotopes characteristics, and implications for continental accretion. Precamb Res 38:1–54CrossRefGoogle Scholar
  93. Pallister JS, McCausland WA, Jónsson S, Lu Z, Zahran HM, Hadidy SE, Aburukbah A, Stewart ICF, Lundgren PR, White RA, Moufti MRH (2010) Broad accommodation of rift-related extension recorded by dyke intrusion in Saudi Arabia. Nat Geosci 3:705–712CrossRefGoogle Scholar
  94. Park Y, Nyblade AA, Rodgers AJ, Al-Amri A (2008) S wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography. Geochem Geophys Geosyst 9. Scholar
  95. Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ, Güner Y, Saroğlu R, Yilmaz Y, Moorbath S, Mitchell JG (1990) Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcan Geotherm Res 44:189–229CrossRefGoogle Scholar
  96. Powell JH, Abed AM, Le Nindre Y-M (2014) Cambrian stratigraphy of Jordan. GeoArabia 19:81–134Google Scholar
  97. Prodehl C (1985) Interpretation of a seismic-refraction survey across the Arabian shield in western Saudi Arabia. Tectonophysics 111:247–282CrossRefGoogle Scholar
  98. Rasul NMA, Stewart ICF (2015) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, 638 pGoogle Scholar
  99. Rasul NMA, Stewart ICF, Nawab ZA (2015) Introduction to the Red Sea: its origin, structure, and environment. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 1–28. Scholar
  100. Reilinger R, McClusky S, Ar Rajehi A (2015) Geodetic constraints on the geodynamic evolution of the Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 135–149Google Scholar
  101. Roeser HA (1975) A detailed magnetic survey of the southern Red Sea. Geol Jahrb D13:131–153Google Scholar
  102. Roobol MJ, Stewart ICF (2009) Cenozoic faults and recent seismicity in northwest Saudi Arabia and the Gulf of Aqaba region. Saudi geological survey technical report SGS-TR-2008-7, 35 pGoogle Scholar
  103. Saleh S, Jahr T, Jentzsch G, Saleh A, Abou Ashour NM (2006) Crustal evaluation of the northern Red Sea rift and Gulf of Suez, Egypt from geophysical data: 3-dimensional modeling. J Afr Earth Sci 45:257–278CrossRefGoogle Scholar
  104. Schardt C (2016) Hydrothermal fluid migration and brine pool formation in the Red Sea: the Atlantis II Deep. Miner Deposita 51:89–111CrossRefGoogle Scholar
  105. Sebai A, Zumbo V, Férand G, Bertrand H, Hussain AG, Giannérini G, Campredon R (1991) 40Ar/39Ar dating of alkaline and tholeiitic magmatism of Saudi Arabia related to the early Red Sea rifting. Earth Planet Sci Lett 104:473–487rCrossRefGoogle Scholar
  106. Shimron AE (1989) The Red Sea Line—a Late Proterozoic transcurrent fault. J Afr Earth Sci 11:95–112CrossRefGoogle Scholar
  107. Squire RJ, Campbell IH, Allen CM, Wilson CJL (2006) Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth Planet Sci Lett 250:116–133CrossRefGoogle Scholar
  108. Stern RJ (1985) The Najd Fault System, Saudi Arabia and Egypt: a late Precambrian rift-related transform system. Tectonics 4:497–511CrossRefGoogle Scholar
  109. Stern RJ (1994) Neoproterozoic (900-550 Ma) arc assembly and continental collision in the East African Orogen. Ann Rev Earth Planet Sci 22:319–351CrossRefGoogle Scholar
  110. Stern RJ (2002) Crustal evolution in the East African Orogen: a neodymium isotopic perspective. J Afr Earth Sci 34:109–117CrossRefGoogle Scholar
  111. Stern RJ (2017) Neoproterozoic formation and evolution of Eastern Desert continental crust—the importance of the infrastructure-superstructure transition. J African Earth Sci.
  112. Stern RJ, Johnson PR (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth-Sci Rev 101:29–67CrossRefGoogle Scholar
  113. Stern RJ, Kröner A, Manton WI, Reischmann T, Mansour MM, Hussein IM (1989a) Geochronology of the late Precambrian Hamisana shear zone, Red Sea Hills, Sudan and Egypt. J Geol Soc London 145:1017–1029CrossRefGoogle Scholar
  114. Stern RJ, Kröner A, Manton WI, Reischmann T, Mansour M, Hussein IM (1989b) Geochronology of the late Precambrian Hamisana shear zone, Red Sea Hills, Sudan and Egypt. J Geol Soc London 146:1017–1029CrossRefGoogle Scholar
  115. Stern RJ, Nielsen KC, Best E, Sultan M, Arvidson RE, Kröner A (1990) Orientation of late Precambrian sutures in the Arabian Nubian shield. Geology 18:1103–1106CrossRefGoogle Scholar
  116. Stern RJ, Johnson PJ, Kröner A, Yibas B (2004) Neoproterozoic ophiolites of the Arabian-Nubian Shield. In: Kusky T (ed) Precambrian Ophiolites. Elsevier, pp 95–128Google Scholar
  117. Stern RJ, Ren M, Ali K, Förster H-J, Al Safarjalani A, Nasir S, Whitehouse MJ, Leybourne MI (2014) Early Carboniferous (~357 Ma) crust beneath northern Arabia: tales from Tell Thannoun (southern Syria). Earth Planet Sci Lett 393:83–93CrossRefGoogle Scholar
  118. Stern RJ, Ali KA, Ren M, Jarrar GH, Romer RL, Leybourne MI, Whitehouse MJ, Ibrahim KM (2016) Cadomian (∼ 560 Ma) crust buried beneath the northern Arabian Peninsula: mineral, chemical, geochronological, and isotopic constraints from NE Jordan xenoliths. Earth Planet Sci Lett 436:31–42CrossRefGoogle Scholar
  119. Stewart ICF, Johnson PR (1994) Satellite gravity and Red Sea tectonics. Saudi Arabian Deputy Ministry for Mineral Resources Open-File Report USGS-OF-94-10, 22 pGoogle Scholar
  120. Stoeser DB, Frost CD (2006) Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chem Geol 226:163–188CrossRefGoogle Scholar
  121. Suayah IB, Rogers JJW, Dabbagh ME (1991) High-Ti continental tholeiites from the Aznam trough, northwestern Saudi Arabia: evidence of “abortive” rifting in the “embryonic” stage of Red Sea opening. Tectonophysics 191:75–87CrossRefGoogle Scholar
  122. Sultan M, Arvidson RE, Duncan IJ, Stern RJ, El Kaliouby B (1988) Extension of the Najd shear system from Saudi Arabia to the Central Eastern Desert of Egypt based on integrated field and Landsat observations. Tectonics 7:1291–1306CrossRefGoogle Scholar
  123. Sultan M, Becker M, Arvidson RE, Shore P, Stern RJ, El Alfy Z, Attia RI (1993) New constraints on Red Sea rifting from correlations of Arabian and Nubian Neoproterozoic outcrops. Tectonics 12:1303–1319CrossRefGoogle Scholar
  124. Szymanski E (2013) Timing, kinematics, and spatial distribution of Miocene extension in the central Arabian margin of the Red Sea rift system. PhD dissertation, U Kansas, 430 pGoogle Scholar
  125. Szymanski E, Stockli DF, Johnson PR (2012) Evidence for an early and sustained mode of diffuse lithospheric extension in the central Arabian flank of the Red Sea rift system: implications for margin structural; kinematics and basin development. In: The American association of petroleum geologists annual convention and exhibition, Long Beach, CA, abstract no. 1235423Google Scholar
  126. Szymanski E, Stockli DF, Johnson PR, Hager C (2016) Thermochronometric evidence for diffuse extension and two-phase rifting within the central Arabian margin of the Red Sea Rift. Tectonics 35. Scholar
  127. Szymanski E, Stockli DF, Johnson PR, Kattan FH, Al Shammari A (2007) Observations from fieldwork and (U-Th)/He thermochronologic study of the central Arabian flank of the Red Sea rift system. In: The American geophysical union, fall meeting 2007, abstract #T41A-0379Google Scholar
  128. Tang Z, Julià J, Zahran H, Mai PM (2016) The lithospheric shear-wave velocity structure of Saudi Arabia: young volcanism in an old shield. Tectonophysics 680:8–27CrossRefGoogle Scholar
  129. Thomas WA (2006) Tectonic inheritance at a continental margin. GSA Today 16(2):4–11.;2CrossRefGoogle Scholar
  130. Vail JR (1985) Pan-African (Late Precambrian) tectonic terranes and the reconstruction of the Arabian-Nubian shield. Geology 13:839CrossRefGoogle Scholar
  131. Voss M, Jokat W (2007) Continent-ocean transition and voluminous magmatic underplating derived from P-wave velocity modeling of the East Greenland continental margin. Geophys Res Lett 170:580–604Google Scholar
  132. Wegener A (1920) Die Entstehung der Kontinente und Ozeane. Vieweg, Brunswick, p 135Google Scholar
  133. Wolfenden E, Ebinger C, Yirgu G, Renne P, Kelley S (2005) Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia. Geol Soc Am Bull 117:846–864CrossRefGoogle Scholar
  134. Zahran HM, Stewart ICF, Johnson PR, Basahel MH (2003) Aeromagnetic anomaly maps of central and western Saudi Arabia. Saudi Geological Survey Open-File Report SGS-OF-2002-8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Geosciences DepartmentUniversity of Texas at DallasRichardsonUSA
  2. 2.PortlandUSA

Personalised recommendations