Results of Micropalaeontological Analyses on Sediment Core FA09 from the Southern Red Sea Continental Shelf

  • Maria GeragaEmail author
  • Spyros Sergiou
  • Dimitris Sakellariou
  • Eelco Rohling


This study presents results of an examination of planktonic and benthic foraminiferal assemblages from the upper half of a 2.64 m-long sediment gravity core retrieved from the southern Red Sea continental shelf. The examined interval corresponds to the time period of the last 16 kyr. The microfaunal associations show concurrent and concomitant variations at long and short time scales. The examined deglacial interval suggests that the Strait of Bab al Mandab most likely remained open, connecting the Red Sea with the Indian Ocean, although this connection was extremely limited. Productive waters associated with inflow from the Gulf of Aden into the Red Sea prevailed during the Late Glacial and Early Holocene periods (~10 to ~6 ka BP), a phase of intensified summer monsoons in the Arabian Sea. The Late Holocene period shows a reduction of productivity and sea floor oxygenation during which time the winter monsoon was stronger. Short-term variations in the abundances of planktonic and benthic foraminiferal assemblages have been linked to events of increased aridity within the Late Glacial and Holocene intervals.



This work was supported by the European Research Council through ERC Advanced Grant269586 ‘DISPERSE: Dynamic Landscapes, Coastal Environments and Human Dispersals’ to Geoff Bailey and Geoffrey King, 2011–2016. We thank HRH Crown Prince Salman bin Abul Aziz Al Saud and the Department of General Survey of the Ministry of Defense and HRH Prince Sultan bin Salman bin Abdul Aziz, President of the Saudi Commission for Tourism and National Heritage (SCTH) for permits and general support, and the President of the Saudi Geological Survey, Dr. Zohair Nawab and his staff, in particular Dr. Najeeb Rasul, for additional support and for their invitation to participate in the Jeddah Workshop. In addition, we thank Geoff Bailey and the personnel at Scottish Universities Environmental Research Centre (SUERC, Glasgow, Scotland) for arranging the radiocarbon analysis. Finally, we give special thanks to the crew of the R/V Aegaeo for their great and responsible work during the survey. This is DISPERSE contribution no. 45.


  1. Abu-Zied RH (2013) Effect of the Red Sea brine-filled deeps (Shaban and Kebrit) on the composition and abundance of benthic and planktonic foraminifera. Arab J Geosci 6:3809–3826CrossRefGoogle Scholar
  2. Abu-Zied RH, Bantan RA, Basaham AS, El Mamoney MH, Al-Washmi HA (2011) Composition, distribution, and taphonomy of nearshore benthic foraminifera of the Farasan Islands, southern Red Sea, Saudi Arabia. J Foramin Res 41:349–362CrossRefGoogle Scholar
  3. Almogi-Labin A, Hemleben C, Meischner D, Erlenkeuser H (1991) Paleoenvironmental events during the last 13,000 years in the central Red Sea as recorded by pteropoda. Paleoceanography 6:83–98CrossRefGoogle Scholar
  4. Almogi-Labin A, Hemleben C, Meischner D, Erlenkeuser H (1996) Response of Red Sea deep-water agglutinated foraminifera to water mass changes during the Late Quaternary. Mar Micropaleontol 28:283–297CrossRefGoogle Scholar
  5. Anderson DM, Prell WL (1991) Coastal upwelling gradient during the Late Pleistocene. In: Proceedings of the ODP Scientific Results, vol 117, pp 265–276Google Scholar
  6. Arz HW, Lamy F, Pätzold J, Müller PJ, Prins M (2003) Mediterranean moisture source for an Early Holocene humid period in the northern Red Sea. Science 300:118–121CrossRefGoogle Scholar
  7. Auras-Schudnagies A, Kroon D, Ganssen G, Hemleben C, van Hinte JE (1989) Distributional pattern of planktonic foraminifers and pteropods in surface waters and top core sediments of the Red Sea, and adjacent areas controlled by the monsoonal regime and other ecological factors. Deep Sea Res Part A 36:1515–1533CrossRefGoogle Scholar
  8. Badawi A, Schmiedl G, Hemleben C (2005) Impact of late Quaternary environmental changes on deep-sea benthic foraminiferal faunas of the Red Sea. Mar Micropaleontol 58(1):13–30CrossRefGoogle Scholar
  9. Bailey G, Al-Sharekh A, Flemming N, Lambeck K, Momber G, Sinclair A, Vita-Finzi C (2007) Coastal prehistory in the southern Red Sea Basin, underwater archaeology, and the Farasan Islands. In: Proceedings of the Seminar for Arabian Studies, vol 37, pp 1–16Google Scholar
  10. Bailey G, Deves MH, Inglis RH, Meredith-Williams MG, Momber G, Sakellariou D, Sinclair AGM, Rousakis G, Al Ghamdi S, Alsharekh AM (2015) Blue Arabia: Palaeolithic and underwater survey in SW Saudi Arabia and the role of coasts in Pleistocene dispersals. Quat Int 382:42–57CrossRefGoogle Scholar
  11. Bailey G, Meredith-Williams M, Alsharekh A, Hausmann N (this volume) The archaeology of Pleistocene coastal environments and human dispersals in the Red Sea: Insights from the Farasan IslandsGoogle Scholar
  12. Bantan RA (1999) Geology and sedimentary environments of Farasan Bank (Saudi Arabia) southern Red Sea: A combined remote sensing and field study. Unpublished PhD dissertation, University of London, U.K., 296 ppGoogle Scholar
  13. Bijma J, Faber J, Hemleben C (1990) Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. J Foraminiferal Res 20(2):95–116CrossRefGoogle Scholar
  14. Biton E, Gildor H, Peltier WR (2008) The Red Sea during the Last Glacial Maximum: Implications for sea level reconstruction. Paleoceanography 23, PA1214. Scholar
  15. Blackwelder P, Hood T, Alvarez-Zarikian C, Nelsen TA, McKee B (1996) Benthic foraminifera from the NECOP study area impacted by the Mississippi River plume and seasonal hypoxia. Quat Int 31:19–36CrossRefGoogle Scholar
  16. Bosence DWJ, Al-Awah MH, Davison I, Rosen BR, Vita-Finzi C, Whittaker E (1998) Salt domes and their control on basin margin sedimentation: a case study from the Tihama plain, Yemen. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics in Rift Basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 448–466CrossRefGoogle Scholar
  17. Dabbagh A, Emmermann R, Hötzl H, Jado AR, Lippolt HJ, Kollmann W, Moser H, Rauert W, Zötl JG (1984) The development of Tihamat Asir during the Quaternary. In: Jado AR, Zotl JG (eds) Quaternary Period in Saudi Arabia, vol 2. Sedimentological, Hydrogeological, Hydrochemical, Geomorphological, Geochronological and Climatological Investigations in Western Saudi Arabia. Springer, Vienna, pp 150–173Google Scholar
  18. Das M, Singh RK, Gupta AK, Bhaumik AK (2017) Holocene strengthening of the Oxygen Minimum Zone in the northwestern Arabian Sea linked to changes in intermediate water circulation or Indian monsoon intensity? Palaeogeogr Palaeoclimatol Palaeoecol 483:125–135CrossRefGoogle Scholar
  19. Davis JC (1986) Statistics and data analysis in geology. Wiley, New York, p 647Google Scholar
  20. De S, Gupta AK (2010) Deep-sea faunal provinces and their inferred environments in the Indian Ocean based on distribution of Recent benthic foraminifera. Palaeogeog Palaeoclimat Palaeoecol 291:429–442CrossRefGoogle Scholar
  21. Demarchi B, Williams MG, Milner N, Russell N, Bailey G, Penkman K (2011) Amino acid racemization dating of marine shells: amound of possibilities. Quat Int 239:114–124CrossRefGoogle Scholar
  22. Dreano D, Raitsos DE, Gittings J, Krokos G, Hoteit I (2016) The Gulf of Aden Intermediate Water intrusion regulates the southern Red Sea summer phytoplankton blooms. PLoS ONE 11(12):e0168440. Scholar
  23. Edelman-Fürstenberg Y, Scherbacher M, Hemleben C, Almogi-Labin A (2001) Deep-sea benthic foraminifera from the central Red Sea. J Foramin Res 31:48–59CrossRefGoogle Scholar
  24. Fenton M, Geiselhart S, Rohling EJ, Hemleben C (2000) Aplanktic zones in the Red Sea. Mar Micropaleontol 40:277–294CrossRefGoogle Scholar
  25. Fernandes C, Rohling EJ, Siddall M (2006) Absence of Quaternary Red Sea land bridges: biogeographic implications. J Biogeogr 33:961–966CrossRefGoogle Scholar
  26. Fleitmann D, Burns S, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary A, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188CrossRefGoogle Scholar
  27. Grant KM, Rohling EJ, Bar-Matthews M, Ayalon A, Medina-Elizalde M, Bronk Ramsey C, Satow C, Roberts AP (2012) Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491:744–747CrossRefGoogle Scholar
  28. Grant KM, Rohling EJ, Bronk Ramsey C, Cheng H, Edwards RL, Florindo F, Heslop D, Marra F, Roberts AP, Tamisiea ME, Williams F (2014) Sea-level variability over five glacial cycles. Nat Commun 5:5076. Scholar
  29. Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421:354–357CrossRefGoogle Scholar
  30. Gupta AK, Sarkar S, De S, Clemens SC, Velu A (2010) Mid-Brunhes strengthening of the Indian Ocean Dipole caused increased equatorial East African and decreased Australasian rainfall. Geophys Res Lett 37:L06706, 6CrossRefGoogle Scholar
  31. Gupta AK, Mohan K, Sarkar S, Clemens SC, Ravindra R, Uttam RK (2011) East-west similarities and differences in the surface and deep northern Arabian Sea records during the past 21 Ka. Palaeogeog Palaeoclimat Palaeoecol 301:75–85CrossRefGoogle Scholar
  32. Halicz E, Reiss Z (1981) Palaeoecological relations of foraminifera in a desert enclosed sea: the Gulf of Aqaba. Mar Ecol 2:15–34CrossRefGoogle Scholar
  33. Hemleben C, Spindler M, Breitinger I, Ott R (1987) Morphological and physiological responses of Globigerinoides sacculifer (Brady) under varying laboratory conditions. Mar Micropaleontol 12:305–324CrossRefGoogle Scholar
  34. Hottinger L, Halicz E, Reiss Z (1993) Recent Foraminifera from the Gulf of Aqaba, Red Sea. Slovenska Akademija Znanosti in Umetnosti, Ljubljana, p 179Google Scholar
  35. Ivanochkoa TS, Ganeshrama RS, Brummerb GJ, Ganssenc G, Jungc S, Moretond S, Kroon D (2005) Variations in tropical convection as an amplifier of global climate change at the millennial scale. Earth Planet Sci Lett 235(1):302–314. Scholar
  36. Kaiho K (1994) Benthic foraminiferal dissolved-oxygen index and dissolved oxygen levels in the modern ocean. Geology 22:719–722CrossRefGoogle Scholar
  37. Kroon D, Ganssen G (1989) Northern Indian Ocean upwelling cells and the stable isotope composition of living planktic foraminifers. Deep-Sea Res 36:1219–1236CrossRefGoogle Scholar
  38. Lambeck K, Purcell A, Fleming NC, Vita-Finzi C, Alsharekh AM, Bailey G (2011) Sea level and shoreline reconstructions for the Red Sea: Isostatic and tectonic considerations and implications for hominin migration out of Africa. Quat Sci Rev 30:3542–3574CrossRefGoogle Scholar
  39. Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the Last Glacial maximum to the Holocene. Proc Natl Acad Sci USA 111(43):15296–15303CrossRefGoogle Scholar
  40. Locke S, Thunell RC (1988) Paleoceanographic record of the last glacial/interglacial cycle in the Red Sea and Gulf of Aden. Palaeogeog Palaeoclimat Palaeocol 64:163–187CrossRefGoogle Scholar
  41. Loeblich AR, Tappan H (1987) Foraminiferal genera and their classification, vol 2. Van Nostrand Reinhold, New YorkGoogle Scholar
  42. Mateu-Vicens G, Box A, Deudero S, Rodriguez B (2010) Comparative analysis of epiphytic foraminifera in sediments colonized by seagrass Posidoniaoceanica and invasive macroalgae Caulerpa spp. J Foramin Res 40:134–147CrossRefGoogle Scholar
  43. Mendes I, Gonzalez R, Dias JMA, Lobo F, Martins V (2004) Factors influencing recent benthic foraminifera distribution on the Guadiana shelf (southwestern Iberia). Mar Micropaleontol 51:171–192CrossRefGoogle Scholar
  44. Momber G, Sakellariou D, Bailey G, Rousakis G (this volume) The multi-disciplinary search for underwater archaeology in the southern Red SeaGoogle Scholar
  45. Moodley L, Schaub BEM, Van der Zwaan GJ, Herman PMJ (1998) Tolerance of benthic foraminifera (Protista: Sarcodina) to hydrogen sulphide. Mar Ecol Prog Ser 169:77–86CrossRefGoogle Scholar
  46. Morcos SA (1970) Physical and chemical oceanography of the Red Sea. Oceanogr Mar Biol Ann Rev 8:73–202Google Scholar
  47. Murray JW (1991) Ecology and paleoecology of benthic foraminifera. John Wiley & Sons, New York, p 397Google Scholar
  48. Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, pp 426Google Scholar
  49. Overpeck J, Rind D, Lacis A, Healy R (1996) Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature 384:447–449. Scholar
  50. Platon E, Sen Gupta BK, Rabalais NN, Turner RE (2005) Effect of seasonal hypoxia on the benthic foraminiferal community of the Louisiana inner continental shelf: the 20th century record. Mar Micropaleontol 54:263–283CrossRefGoogle Scholar
  51. Raitsos DE, Yi X, Platt T, Racault M, Brewin RJW, Pradhan Y, Papadopoulos VP, Sathyendranath S, Hoteit I (2015) Monsoon oscillations regulate fertility of the Red Sea. Geophys Res Lett 42:855–862CrossRefGoogle Scholar
  52. Reyment RA, Joreskog KG (1996) Applied factor analysis in the natural sciences. Cambridge University Press, Cambridge, p 371Google Scholar
  53. Rohling EJ, Fenton M, Jorissen FJ, Bertrand P, Ganssen G, Caulet JP (1998) Magnitudes of sea-level lowstands of the past 500,000 years. Nature 394:162–165CrossRefGoogle Scholar
  54. Rohling EJ, Grant KM, Roberts AP, Larrasoaña JC (2013) Palaeoclimate variability in the Mediterranean and Red Sea regions during the last 500,000 years; implications for hominin migrations. Curr Anthropol 54(No. S8, Alternative Pathways to Complexity: Evolutionary Trajectories in the Middle Paleolithic and Middle Stone Age):S183–S201Google Scholar
  55. Schulz H, Rad U, Erlenkeuser H (1998) Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393:54–57CrossRefGoogle Scholar
  56. Sen Gupta BK, Machain-Castillo ML (1993) Benthic foraminifera in oxygen-poor habitats. Mar Micropaleontol 20:183–201CrossRefGoogle Scholar
  57. Siccha M, Trommer G, Schulz H, Hemleben C, Kucera M (2009) Factors controlling the distribution of planktonic foraminifera in the Red Sea and implications for the development of transfer functions. Mar Micropaleontol 72:146–156CrossRefGoogle Scholar
  58. Siddall M, Smeed DA, Matthieen S, Rohling EJ (2002) Modeling the seasonal cycle of the exchange flow. Deep-Sea Res 49:1551–1569CrossRefGoogle Scholar
  59. Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858CrossRefGoogle Scholar
  60. Siddall M, Smeed DA, Hemleben C, Rohling EJ, Schmelzer I, Peltier WR (2004) Understanding the Red Sea response to sea level. Earth Planet Sci Lett 225:421–434CrossRefGoogle Scholar
  61. Sofianos SS, Johns WE (2007) Observations of the summer Red Sea circulation. J Geophys Res 112:C06025.
  62. Sofianos S, Papadopoulos V, Abulnaja Y, Giouroukou D, Bolonaki E, Hoteit I (2016) Summer-time monsoon-driven variability in the Red Sea and the effects of the exchanges with the Indian Ocean. In: International conference on the marine environment of the Red Sea. King Abdullah University of Science and TechnologyGoogle Scholar
  63. Southon J, Kashgarian M, Fontugne M, Metivier B, Yim WW-S (2002) Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44:167–180CrossRefGoogle Scholar
  64. Thiede J (1975) Distribution of foraminifera in coastal waters of an upwelling area. Nature 253:712–714CrossRefGoogle Scholar
  65. Triantafyllou G, Yao F, Petihakis G, Tsiaras KP, Raitsos DE, Hoteit I (2014) Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model. J Geophys Res Oceans 119:1791–1811CrossRefGoogle Scholar
  66. Trommer G, Siccha M, Rohling EJ, Grant K, van der Meer MTJ, Schouten S, Hemleben C, Kucera M (2010) Millennial-scale variability in Red Sea circulation in response to Holocene insolation forcing. Paleoceanography 25.
  67. Van der Zwaan GJ, Duijnstee IAP, den Dulk M, Ernst SR, Jannink NT, Kouwenhoven TJ (1999) Benthic foraminifers: proxies or problems? a review of paleoecological concepts. Earth Sci Rev 46:213–236Google Scholar
  68. Weiner A, Weinkauf M, Kurasawa A, Darling K, Kucera M (2015) Genetic and morphometric evidence for parallel evolution of the Globigerinella calida morphotype. Mar Micropaleontol 114:19–35CrossRefGoogle Scholar
  69. Woelk S, Quadfasel D (1996) Renewal of deep water in the Red Sea during 1982–1987. J Geophys Res 101(C8):18155–18165CrossRefGoogle Scholar
  70. Wyrtki K (1974) On the deep circulation of the Red Sea. L’oceanographie physique de la Mer Rouge. Cent Natl pour l’Exploitation des Oceans, Paris, pp 135–163Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria Geraga
    • 1
    Email author
  • Spyros Sergiou
    • 1
  • Dimitris Sakellariou
    • 2
  • Eelco Rohling
    • 3
    • 4
  1. 1.Laboratory of Marine Geology and Physical Oceanography, Department of GeologyUniversity of PatrasPatrasGreece
  2. 2.Hellenic Centre for Marine ResearchAnavyssos, AthensGreece
  3. 3.Research School of Earth SciencesAustralian National UniversityCanberraAustralia
  4. 4.Ocean and Earth Science, National Oceanography Centre, University of SouthamptonSouthamptonUK

Personalised recommendations