Advertisement

Hydrothermal Prospection in the Red Sea Rift: Geochemical Messages from Basalts

  • Froukje M. van der Zwan
  • Colin W. Devey
  • Nico Augustin
Chapter

Abstract

Hydrothermal circulation at mid-ocean ridges and assimilation of hydrothermally altered crust or hydrothermal fluids by rising magma can be traced by measuring chlorine (Cl) excess in erupted lavas. The Red Sea Rift provides a unique opportunity to study assimilation of hydrothermally altered crust at an ultra-slow spreading ridge (maximum 1.6 cm yr−1 full spreading rate) by Cl, due to its saline seawater (40–42‰, cf. 35‰ in open ocean water), the presence of (hot) brine pools (up to 270‰ salinity and 68 °C) and the thick evaporite sequences that flank the young rift. Absolute chlorine concentrations (up to 1300 ppm) and Cl concentrations relative to minor or trace elements of similar mantle incompatibility (e.g., K, Nb) are much higher in Red Sea basalts than in basalts from average slow spreading ridges. Mantle Cl/Nb concentrations can be used to calculate the Cl-excess, above the magmatic Cl, that is present in the samples. Homogeneous within-sample Cl concentrations, high Cl/H2O, the decoupling of Cl-excess from other trace elements and its independence of the presence of highly saline seafloor brines at the site of eruption indicate that Cl is not enriched at the seafloor. Instead we find basaltic Cl-excess to be spatially closely correlated with evidence of hydrothermal activity, suggesting that deeper assimilation of hydrothermal Cl is the dominant Cl-enrichment process. A proximity of samples to both evaporite outcrops and bathymetric signs of volcanism on the seafloor enhance Cl-excess in basalts. The basaltic Cl-excess can be used as a tracer together with new bathymetric maps as well as indications of hydrothermal venting (hot brine pools, metalliferous sediments) to predict where hydrothermal venting or now inactive hydrothermal vent fields can be expected. Sites of particular interest for future hydrothermal research are the Mabahiss Deep, the Thetis-Hadarba-Hatiba Deeps and Shagara-Aswad-Erba Deeps (especially their large axial domes), and Poseidon Deep. Older hydrothermal vent fields may be present at the Nereus and Suakin Deeps. These sites significantly increase the potential of hydrothermal vent field prospection in the Red Sea.

Notes

Acknowledgements

We are grateful for the help of the captains, crews and scientific shipboard parties of RV Poseidon and RV Pelagia expeditions P408 and PE350/351. We gratefully thank Jan Fietzke for the help with the Cl measurements and Mario Thöner, Matthias Frische, Dagmar Rau (all at GEOMAR) and Renat Almeev (University of Hannover) for technical support with the EMP, LA-ICP-MS and FTIR measurements, respectively. Antoine Bézos (University of Nantes) and Anna Krätschell are thanked for providing additional (sub)samples of the Red Sea. Reviews by three anonymous reviewers are greatly appreciated. We thank the Saudi Geological Survey for accommodating the workshop in preparation of this volume. We would like to acknowledge generous financial support from the Jeddah Transect Project, between King Abdulaziz University and Helmholtz-Centre for Ocean Research GEOMAR, that was funded by King Abdulaziz University (KAU), Jeddah, Saudi Arabia, under grant no. T-065/430.

References

  1. Alt JC, Teagle DA (2003) Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. Chem Geol 201:191–211CrossRefGoogle Scholar
  2. Alt JC, Honnorez J, Laverne C, Emmermann R (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry and evolution of seawater-basalt interactions. J Geophys Res Solid Earth 91:10309–10335CrossRefGoogle Scholar
  3. Anderson MO, Hannington MD, Haase K, Schwarz-Schampera U, Augustin N, McConachy TF, Allen K (2016) Tectonic focusing of voluminous basaltic eruptions in magma-deficient backarc rifts. Earth Planet Sci Lett 440:43–55CrossRefGoogle Scholar
  4. Augustin N, Lackschewitz K, Kuhn T, Devey CW (2008) Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15  N). Mar Geol 256:18–29CrossRefGoogle Scholar
  5. Augustin N, Devey CW, van der Zwan FM, Feldens P, Bantan RA, Kwasnitschka T (2014a) The rifting to spreading transition in the Red Sea. Earth Planet Sci Lett 395:217–230CrossRefGoogle Scholar
  6. Augustin N, Schmidt M, Devey CW, Al-Aidaroos A, Kürten B, Eisenhauer A, Brückmann W, Dengler M, van der Zwan FM, Feldens P (2014b) The Jeddah Transect Project: extensive mapping of the Red Sea Rift. InterRidge News 22:68–73Google Scholar
  7. Augustin N, van der Zwan FM, Devey CW, Ligi M, Kwasnitschka T, Feldens P, Bantan RA, Basaham AS (2016) Geomorphology of the central Red Sea Rift: determining spreading processes. Geomorph 274:162–179CrossRefGoogle Scholar
  8. Bach W, Peucker-Ehrenbrink B, Hart SR, Blusztajn JS (2003) Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B—implications for seawater-crust exchange budgets and Sr-and Pb-isotopic evolution of the mantle. Geochem Geophys Geosyst 4(3).  https://doi.org/10.1029/2002gc000419
  9. Bäcker H, Richter H (1973) Die rezente hydrothermal-sedimentäre Lagerstätte Atlantis-II-Tief im Roten Meer. Geol Rundsch 62:697–737CrossRefGoogle Scholar
  10. Bäcker H, Schoell M (1972) New deeps with brines and metalliferous sediments in the Red Sea. Nat Phys Sci 240:153–158CrossRefGoogle Scholar
  11. Baker ET, German CR (2004) On the global distribution of hydrothermal vent fields. In: German CR, Lin J, Parson LM (eds) Mid-ocean ridges: hydrothermal interactions between the lithosphere and oceans, vol 148. American Geophysical Union, Geophys Monograph, pp 245–266Google Scholar
  12. Baker ET, Massoth GJ (1987) Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth Planet Sci Lett 85(1):59–73CrossRefGoogle Scholar
  13. Barnes JD, Cisneros M (2012) Mineralogical control on the chlorine isotope composition of altered oceanic crust. Chem Geol 326–327:51–60CrossRefGoogle Scholar
  14. Beaulieu SE, Baker ET, German CR (2015) Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep Sea Res Part II 121:202–212CrossRefGoogle Scholar
  15. Berndt ME, Seyfried WE (1990) Boron, bromine, and other trace elements as clues to the fate of chlorine in mid-ocean ridge vent fluids. Geochim Cosmochim Acta 54:2235–2245CrossRefGoogle Scholar
  16. Bischoff JL, Rosenbauer RJ (1987) Phase separation in seafloor geothermal systems; an experimental study of the effects on metal transport. Am J Sci 287:953–978CrossRefGoogle Scholar
  17. Blondel P (2010) The handbook of sidescan sonar. Springer Science & Business MediaGoogle Scholar
  18. Blum N, Puchelt H (1991) Sedimentary-hosted polymetallic massive sulfide deposits of the Kebrit and Shaban Deeps, Red Sea. Mineral Depos 26:217–227CrossRefGoogle Scholar
  19. Brewer PG, Spencer DW (1969) A note on the chemical composition of the Red Sea brines. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin, pp 174–179CrossRefGoogle Scholar
  20. Chu D, Gordon RG (1998) Current plate motions across the Red Sea. Geophys J Int 135:313–328CrossRefGoogle Scholar
  21. Coogan LA (2003) Contaminating the lower crust in the Oman ophiolite. Geology 31:1065–1068CrossRefGoogle Scholar
  22. Coogan LA, Mitchell NC, O’Hara MJ (2002) Roof assimilation at fast spreading ridges: an investigation combining geophysical, geochemical, and field evidence. J Geophys Res 108:2002Google Scholar
  23. Coogan LA, Mitchell NC, O’Hara MJ (2003) Roof assimilation at fast spreading ridges: an investigation combining geophysical, geochemical, and field evidence. J Geophys Res Solid Earth 108:ECV 2-1–ECV 2-14CrossRefGoogle Scholar
  24. Devey CW, Scientific Shipboard Party (2013) SoMARTherm: the Mid-Atlantic ridge 13–33 °S. Cruise No. MSM25. Leitstelle Deutsche Forschungsschiffe, Universität Hamburg, 113 pGoogle Scholar
  25. Devey CW, German C, Haase K, Lackschewitz K, Melchert B, Connelly D (2010) The relationships between volcanism, tectonism, and hydrothermal activity on the southern equatorial Mid-Atlantic Ridge. In: Rona PA, Devey CW, Dyment J, Murton BJ (eds) Diversity of hydrothermal systems on slow spreading ocean ridges, vol 188. American Geophysical Union, Geophys Monograph, pp 133–152Google Scholar
  26. Dick HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu Y-L, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm H-U, Yoshinobu A (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179:31–51CrossRefGoogle Scholar
  27. Edmonds HN, Michael PJ, Baker ET, Connelly DP, Snow JE, Langmuir CH, Dick HJB, Muhe R, German CR, Graham DW (2003) Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature 421:252–256CrossRefGoogle Scholar
  28. Escartín J, Soule SA, Cannat M, Fornari DJ, Düşünür D, Garcia R (2014) Lucky strike seamount: Implications for the emplacement and rifting of segment-centered volcanoes at slow spreading mid-ocean ridges. Geochem Geophys Geosyst 15:4157–4179CrossRefGoogle Scholar
  29. Escartín J, Mével C, Petersen S, Bonnemains D, Cannat M, Andreani M, Augustin N, Bezos A, Chavagnac V, Choi Y et al (2017) Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20’N and 13°30’N, Mid-Atlantic Ridge). Geochem Geophys Geosyst 18(4):1451–1482.  https://doi.org/10.1002/2016GC006775CrossRefGoogle Scholar
  30. Fontaine FJ, Cannat M, Escartín J, Crawford WC (2014) Along-axis hydrothermal flow at the axis of slow spreading Mid-Ocean Ridges: insights from numerical models of the Lucky Strike vent field (MAR). Geochem Geophys Geosyst 15:2918–2931CrossRefGoogle Scholar
  31. Fouquet Y (1997) Where are the large hydrothermal sulphide deposits in the oceans? Phil Trans Roy Soc Math Phys Eng Sci 355:427–441CrossRefGoogle Scholar
  32. Fournier R (1987) Conceptual models of brine evolution in magmatic-hydrothermal systems. US Geol Surv Prof Pap 1350:1487–1506Google Scholar
  33. France L, Ildefonse B, Koepke J (2009) Interactions between magma and hydrothermal system in Oman ophiolite and in IODP Hole 1256D: fossilization of a dynamic melt lens at fast spreading ridges. Geochem Geophys Geosyst 10:Q10O19.  https://doi.org/10.1029/2009gc002652CrossRefGoogle Scholar
  34. France L, Koepke J, Ildefonse B, Cichy SB, Deschamps F (2010) Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contrib Mineral Petrol 160:683–704CrossRefGoogle Scholar
  35. Früh-Green GL, Kelley DS, Bernasconi SM, Karson JA, Ludwig KA, Butterfield DA, Boschi C, Proskurowski G (2003) 30,000 years of hydrothermal activity at the Lost City vent field. Science 301:495–498CrossRefGoogle Scholar
  36. German CR, Petersen S, Hannington MD (2016) Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming? Chem Geol 420:114–126CrossRefGoogle Scholar
  37. Gillis KM, Coogan LA, Chaussidon M (2003) Volatile element (B, Cl, F) behaviour in the roof of an axial magma chamber from the East Pacific Rise. Earth Planet Sci Lett 213:447–462CrossRefGoogle Scholar
  38. Girdler RW, Evans TR (1977) Red Sea heat flow. Geophys J Int 51:245–251CrossRefGoogle Scholar
  39. Guney M, Al-Marhoun MA, Nawab ZA (1988) Metalliferous sub-marine sediments of the Atlantis-II-Deep, Red Sea. Can Min Metall Bull 81:33–39Google Scholar
  40. Gurvich EG (2006) Metalliferous sediments of the Red Sea. Metalliferous sediments of the World Ocean: fundamental theory of Deep-Sea hydrothermal sedimentation. Springer, Berlin, pp 127–210Google Scholar
  41. Hannington M, Jamieson J, Monecke T, Petersen S (2010) Modern sea-floor massive sulfides and base metal resources: toward an estimate of global sea-floor massive sulfide potential. Soc Econ Geol Spec Pub 15:317–338Google Scholar
  42. Hannington M, Jamieson J, Monecke T, Petersen S, Beaulieu S (2011) The abundance of seafloor massive sulfide deposits. Geology 39:1155–1158CrossRefGoogle Scholar
  43. Hart S, Erlank A, Kable E (1974) Sea floor basalt alteration: some chemical and Sr isotopic effects. Contrib Mineral Petrol 44:219–230CrossRefGoogle Scholar
  44. Ito E, Harris DM, Anderson AT (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47:1613–1624CrossRefGoogle Scholar
  45. Jambon A, Déruelle B, Dreibus G, Pineau F (1995) Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem Geol 126:101–117CrossRefGoogle Scholar
  46. Jenner FE, O’Neill HSC (2012) Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem Geophys Geosyst 13(2):Q02005CrossRefGoogle Scholar
  47. Kelley DS, Delaney JR (1987) Two-phase separation and fracturing in mid-ocean ridge gabbros at temperatures greater than 700 °C. Earth Planet Sci Lett 83:53–66CrossRefGoogle Scholar
  48. Kendrick MA, Arculus R, Burnard P, Honda M (2013) Quantifying brine assimilation by submarine magmas: examples from the Galápagos Spreading Centre and Lau Basin. Geochim Cosmochim Acta 123:150–165CrossRefGoogle Scholar
  49. Kendrick MA, Hemond C, Kamenetsky VS, Danyushevsky L, Devey CW, Rodemann T, Jackson MG, Perfit MR (2017) Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nat Geosci 10:222–228.  https://doi.org/10.1038/NGEO2902CrossRefGoogle Scholar
  50. Kent AJR, Norman MD, Hutcheon ID, Stolper EM (1999a) Assimilation of seawater-derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii. Chem Geol 156:299–319CrossRefGoogle Scholar
  51. Kent AJR, Clague DA, Honda M, Stolper EM, Hutcheon ID, Norman MD (1999b) Widespread assimilation of a seawater-derived component at Loihi Seamount, Hawaii. Geochim Cosmochim Acta 63:2749–2761CrossRefGoogle Scholar
  52. Kent AJR, Peate DW, Newman S, Stolper EM, Pearce JA (2002) Chlorine in submarine glasses from the Lau Basin: seawater contamination and constraints on the composition of slab-derived fluids. Earth Planet Sci Lett 202:361–377CrossRefGoogle Scholar
  53. Klinkhammer G, Bender M, Weiss RF (1977) Hydrothermal manganese in the Galapagos Rift. Nature 269:319–320CrossRefGoogle Scholar
  54. Laurila TE, Hannington MD, Petersen S, Garbe-Schönberg D (2014) Early depositional history of metalliferous sediments in the Atlantis II Deep of the Red Sea: evidence from rare earth element geochemistry. Geochim Cosmochim Acta 126:146–168CrossRefGoogle Scholar
  55. le Roux PJ, Shirey SB, Hauri EH, Perfit MR, Bender JF (2006) The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet Sci Lett 251:209–231CrossRefGoogle Scholar
  56. Lein AY, Bogdanov YA, Maslennikov V, Li S, Ulyanova N, Maslennikova S, Ulyanov A (2010) Sulfide minerals in the Menez Gwen nonmetallic hydrothermal field (Mid-Atlantic Ridge). Lithol Mineral Resour 45:305–323CrossRefGoogle Scholar
  57. Linke P, Schmidt M, Rohleder M, Al-Barakati A, Al-Farawati R (2015) Novel online digital video and high-speed data broadcasting via standard coaxial cable onboard marine operating vessels. Mar Technol Soc Bull 49:7–18CrossRefGoogle Scholar
  58. Marcon Y, Sahling H, Borowski C, dos Santos FC, Thal J, Bohrmann G (2013) Megafaunal distribution and assessment of total methane and sulfide consumption by mussel beds at Menez Gwen hydrothermal vent, based on geo-referenced photomosaics. Deep Sea Res Part I 75:93–109CrossRefGoogle Scholar
  59. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  60. Metz D, Augustin N, van der Zwan FM, Bantan RA, Al-Aidaroos AM (2013) Mabahiss Mons, 25.5 oN Red Sea Rift: tectonics and volcanism of a large submarine dome volcano. In: EGU general assembly conference abstracts, vol 15, p 10487Google Scholar
  61. Michael PJ, Cornell WC (1998) Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J Geophys Res 103:18325–18356CrossRefGoogle Scholar
  62. Michael PJ, Schilling J-G (1989) Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components. Geochim Cosmochim Acta 53:3131–3143CrossRefGoogle Scholar
  63. Mitchell NC, Ligi M, Ferrante V, Bonatti E, Rutter E (2010) Submarine salt flows in the central Red Sea. Geol Soc Am Bull 122:701–713CrossRefGoogle Scholar
  64. Monin A, Plakhin E, Podrazhansky A, Sagalevich A, Sorokhtin O (1981) Visual observations of the Red Sea hot brines. Nature 291:222–225CrossRefGoogle Scholar
  65. Monin A, Litvin V, Podrazhansky A, Sagalevich A, Sorokhtin O, Voitov V, Yastrebov V, Zonenshain L (1982) Red sea submersible research expedition. Deep Sea Res Part A Oceanographic Res Papers 29(3):361–373CrossRefGoogle Scholar
  66. Perfit MR, Cann JR, Fornari DJ, Engels J, Smith DK, Ian Ridley W, Edwards MH (2003) Interaction of sea water and lava during submarine eruptions at mid-ocean ridges. Nature 426:62–65CrossRefGoogle Scholar
  67. Pertsev A, Bortnikov N, Vlasov E, Beltenev V, Dobretsova I, Ageeva O (2012) Recent massive sulfide deposits of the Semenov ore district, Mid-Atlantic Ridge, 13°31′ N: associated rocks of the oceanic core complex and their hydrothermal alteration. Geol Ore Deps 54:334–346CrossRefGoogle Scholar
  68. Petersen S, Herzig P, Hannington MD (2000) Third dimension of a presently forming VMS deposit: TAG hydrothermal mound, Mid-Atlantic Ridge, 26 oN. Mineral Deposita 35:233–259CrossRefGoogle Scholar
  69. Petersen S, Kuhn K, Kuhn T, Augustin N, Hékinian R, Franz L, Borowski C (2009) The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14o45′ N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos 112:40–56CrossRefGoogle Scholar
  70. Pierret MC, Clauer N, Bosch D, Blanc G, France-Lanord C (2001) Chemical and isotopic (87Sr/86Sr, δ18O, δD) constraints to the formation processes of Red-Sea brines. Geochim Cosmochim Acta 65:1259–1275CrossRefGoogle Scholar
  71. Pierret M, Clauer N, Bosch D, Blanc G (2010) Formation of Thetis Deep metal-rich sediments in the absence of brines, Red Sea. J Geochem Explor 104:12–26CrossRefGoogle Scholar
  72. Rona PA, Klinkhammer G, Nelsen TA, Trefry JH, Elderfield H (1986) Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature 321:33–37CrossRefGoogle Scholar
  73. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour under saturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455CrossRefGoogle Scholar
  74. Schmidt M, Linke P, Esser D (2013a) Recent development in IR sensor technology for monitoring subsea methane discharge. Mar Technol Soc Bull 47:27–36CrossRefGoogle Scholar
  75. Schmidt M, Al-Farawati R, Al-Aidaroos A, Kürten B (eds) (2013b) RV PELAGIA cruise report 64PE350/64PE351. Berichte aus dem Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) 5Google Scholar
  76. Schmidt M, Al-Farawati R, Botz R (2015) Geochemical classification of brine-filled Red Sea deeps. In: Rasul NMA, Stewart ICF (eds) The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, pp 219–233Google Scholar
  77. Schoell M, Hartmann M (1973) Detailed temperature structure of the hot brines in the Atlantis II Deep area (Red Sea). Mar Geol 14:1–14CrossRefGoogle Scholar
  78. Schramm B, Devey CW, Gillis KM, Lackschewitz K (2005) Quantitative assessment of chemical and mineralogical changes due to progressive low-temperature alteration of East Pacific Rise basalts from 0 to 9 Ma. Chem Geol 218:281–313CrossRefGoogle Scholar
  79. Soule SA, Fornari DJ, Perfit MR, Ridley WI, Reed MH, Cann JR (2006) Incorporation of seawater into mid-ocean ridge lava flows during emplacement. Earth Planet Sci Lett 252:289–307CrossRefGoogle Scholar
  80. Staudigel H, Plank T, White B, Schmincke HU (1996) Geochemical fluxes during seafloor alteration of the basaltic upper oceanic Crust: DSDP sites 417 and 418. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction top to bottom. American Geophysical Union, Washington, DC, pp 19–38Google Scholar
  81. Sun WD, Binns RA, Fan AC, Kamenetsky VS, Wysoczanski R, Wei GJ, Hu YH, Arculus RJ (2007) Chlorine in submarine volcanic glasses from the eastern Manus Basin. Geochim Cosmochim Acta 71:1542–1552CrossRefGoogle Scholar
  82. Swallow JC, Crease J (1965) Hot salty water at the bottom of the Red Sea. Nature 205:165–166CrossRefGoogle Scholar
  83. Szitkar F, Petersen S, Caratori Tontini F, Cocchi L (2015) High-resolution magnetics reveal the deep structure of a volcanic-arc-related basalt-hosted hydrothermal site (Palinuro, Tyrrhenian Sea). Geochem Geophys Geosyst 16:1950–1961CrossRefGoogle Scholar
  84. van der Zwan FM (2014) Hydrothermal activity at slow-spreading mid-ocean ridges: evidence from chlorine in basalt. PhD thesis, Christian-Albrechts-Universität KielGoogle Scholar
  85. van der Zwan FM, Fietzke J, Devey CW (2012) Precise measurement of low (<100 ppm) chlorine concentrations in submarine basaltic glass by electron microprobe. J Analyt At Spectrom 27:1966–1974CrossRefGoogle Scholar
  86. van der Zwan FM, Devey CW, Augustin N, Almeev RR, Bantan RA, Basaham A (2015) Hydrothermal activity at the ultraslow- to slow-spreading Red Sea Rift traced by chlorine in basalt. Chem Geol 405:63–81CrossRefGoogle Scholar
  87. van der Zwan FM, Devey CW, Hansteen TH, Almeev RR, Augustin N, Frische M, Haase KM, Basaham A, Snow JE (2017) Lower crustal hydrothermal circulation at slow-spreading ridges: Evidence from chlorine in Arctic and South Atlantic basalt glasses and melt inclusions. Contrib Mineral Petrol 172(11–12):97.  https://doi.org/10.1007/s00410-017-1418-1CrossRefGoogle Scholar
  88. Von Damm K, Lilley M, Shanks W III, Brockington M, Bray A, O’Grady K, Olson E, Graham A, Proskurowski G (2003) Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet Sci Lett 206:365–378CrossRefGoogle Scholar
  89. Wanless V, Perfit M, Ridley W, Klein E (2010) Dacite petrogenesis on mid-ocean ridges: evidence for oceanic crustal melting and assimilation. J Petrol 51:2377–2410CrossRefGoogle Scholar
  90. Whitmarsh RB, Weser OE, Ross DA (1974) Initial reports of the deep sea drilling project, vol 23. U.S. Government Printing Office, Washington, DC, pp 35–56Google Scholar
  91. Yoshikawa S, Okino K, Asada M (2012) Geomorphological variations at hydrothermal sites in the southern Mariana Trough: relationship between hydrothermal activity and topographic characteristics. Mar Geol 303:172–182CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Froukje M. van der Zwan
    • 1
    • 2
  • Colin W. Devey
    • 1
  • Nico Augustin
    • 1
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Institute of GeosciencesChristian Albrechts University KielKielGermany

Personalised recommendations