Advertisement

Predicting Confidence Interval for the Proportion at the Time of Study Planning in Small Clinical Trials

  • Jihnhee Yu
  • Albert Vexler
Chapter
Part of the ICSA Book Series in Statistics book series (ICSABSS)

Abstract

Confidence intervals are commonly used to assess the precision of parameter estimations. Particularly in small clinical trials, such assessment may be used in place of a power calculation. We discuss `future' confidence interval prediction with binomial outcomes for small clinical trials and sample size calculation, where the term `future' confidence interval emphasizes the confidence interval as a function of a random sample that is not observed at the planning stage of a study. We propose and discuss three probabilistic approaches to future confidence interval prediction when the sample size is small. We demonstrate substantial differences among these approaches in terms of the interval width prediction and sample size calculation. We show that the approach based on the expectation of the boundaries has the most desirable properties and is easy to implement. In this chapter, we primarily discuss prediction of the Clopper-Pearson exact confidence interval, and then extend our discussion to other confidence interval methods. In particular, we discuss the arcsine transformation as a viable alternative to the exact confidence interval.

Keywords

Angular transformation Exact confidence interval Expectation of the confidence interval Likelihood-based approach Small sample Study design 

References

  1. Agresti, A., & Coull, B. A. (1998). Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician, 52(2), 119–126.MathSciNetGoogle Scholar
  2. Anscombe, F. J. (1948). The transformation of Poisson, binomial and negative-binomial data. Biometrika, 35(3/4), 246–254.MathSciNetCrossRefGoogle Scholar
  3. Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions. Canadian Journal of Statistics, 28(4), 783–798.MathSciNetCrossRefGoogle Scholar
  4. Blyth, C. R., & Still, H. A. (1983). Binomial confidence intervals. Journal of the American Statistical Association, 78(381), 108–116.MathSciNetCrossRefGoogle Scholar
  5. Bougnoux, P., Hajjaji, N., Ferrasson, M. N., Giraudeau, B., Couet, C., & Le Floch, O. (2009). Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: A phase II trial. British Journal of Cancer, 101(12), 1978–1985.CrossRefGoogle Scholar
  6. Breiman, L. (1992). Probability. Philadelphia, PA: SIAM.CrossRefGoogle Scholar
  7. Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16, 101–117.MathSciNetzbMATHGoogle Scholar
  8. Chang, M. N., & O’Brien, P. C. (1986). Confidence intervals following group sequential tests. Controlled Clinical Trials, 7(1), 18–26.CrossRefGoogle Scholar
  9. Clopper, C. J., & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26(4), 404–413.CrossRefGoogle Scholar
  10. Freeman, M. F., & Tukey, J. W. (1950). Transformations related to the angular and the square root. The Annals of Mathematical Statistics, 21, 607–611.MathSciNetCrossRefGoogle Scholar
  11. Levy, E. I., Ecker, R. D., Horowitz, M. B., Gupta, R., Hanel, R. A., Sauvageau, E., et al. (2006). Stent-assisted intracranial recanalization for acute stroke: Early results. Neurosurgery, 58(3), 458–463.CrossRefGoogle Scholar
  12. Martin-Schild, S., Hallevi, H., Shaltoni, H., Barreto, A. D., Gonzales, N. R., Aronowski, J., et al. (2009). Combined neuroprotective modalities coupled with thrombolysis in acute ischemic stroke: A pilot study of caffeinol and mild hypothermia. Journal of Stroke and Cerebrovascular Diseases, 18(2), 86–96.CrossRefGoogle Scholar
  13. Newcombe, R. G., & Vollset, S. E. (1994). Confidence intervals for a binomial proportion. Statistics in Medicine, 13(12), 1283–1285.CrossRefGoogle Scholar
  14. Pires, A. M., & Amado, C. (2008). Interval estimators for a binomial proportion: Comparison of twenty methods. REVSTAT–Statistical Journal, 6(2), 165–197.MathSciNetzbMATHGoogle Scholar
  15. Rao, C. R. (1973). Linear statistical inference and its applications. New York: Wiley.CrossRefGoogle Scholar
  16. Rino, Y., Yukawa, N., Murakami, H., Wada, N., Yamada, R., Hayashi, T., et al. (2010). A phase II study of S-1 monotherapy as a first-line combination therapy of S-1 plus cisplatin as a second-line therapy, and weekly paclitaxel monotherapy as a third-line therapy in patients with advanced gastric carcinoma: A second report. Clinical Medicine Insights: Oncology, 4, CMO-S3920.CrossRefGoogle Scholar
  17. Sahai, H., & Ageel, M. I. (2000). Analysis of variance: Fixed, random and mixed models. Ann Arbor, MI: Sheridan Books.CrossRefGoogle Scholar
  18. Schiffer, F., Johnston, A. L., Ravichandran, C., Polcari, A., Teicher, M. H., Webb, R. H., et al. (2009). Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: A pilot study of 10 patients with major depression and anxiety. Behavioral and Brain Functions, 5(1), 46.CrossRefGoogle Scholar
  19. Smith, W. S., Sung, G., Starkman, S., Saver, J. L., Kidwell, C. S., Gobin, Y. P., et al. (2005). Safety and efficacy of mechanical embolectomy in acute ischemic stroke: Results of the MERCI trial. Stroke, 36(7), 1432–1438.CrossRefGoogle Scholar
  20. Sokalr, R. R., & Rohlf, F. J. B. (1981). The principles and practice of statistics in biological research. New York: WH Freeman.Google Scholar
  21. Stallard, N. (1998). Sample size determination for phase II clinical trials based on Bayesian decision theory. Biometrics, 54, 279–294.MathSciNetCrossRefGoogle Scholar
  22. TIMI Study Group*. (1985). The thrombolysis in myocardial infarction (TIMI) trial: Phase I findings. New England Journal of Medicine, 312(14), 932–936.CrossRefGoogle Scholar
  23. Vollset, S. E. (1993). Confidence intervals for a binomial proportion. Statistics in Medicine, 12(9), 809–824.CrossRefGoogle Scholar
  24. Wang, W. (2014). An iterative construction of confidence intervals for a proportion. Statistica Sinica, 24, 1389–1410.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of BiostatisticsUniversity at Buffalo, State University of New YorkBuffaloUSA

Personalised recommendations