Advertisement

A Concept for Generating Business Process Models from Natural Language Description

  • Krzysztof Honkisz
  • Krzysztof Kluza
  • Piotr Wiśniewski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11061)

Abstract

Manual extraction of business process models from technical documentation is a time-consuming task. Several approaches to generating such process models have been proposed. We present a proposal of a new method for extracting business process from natural language text through intermediate process model using the spreadsheet-based representation. Such intermediate model is transformed into a valid BPMN process model. Our method is enhanced with semantic analysis of the text, allows for quick check of the transformation result and manual correction during this process. As the obtained BPMN model is structured, it is easier to check its correctness.

References

  1. 1.
    OMG: Business Process Model and Notation (BPMN) Version 2.0. Technical report, Object Management Group (OMG) (2011)Google Scholar
  2. 2.
    Ferreira, R.C.B., Thom, L.H., Fantinato, M.: A semi-automatic approach to identify business process elements in natural language texts. In: Proceedings of the 19th International Conference on Enterprise Information Systems (2017, to appear)Google Scholar
  3. 3.
    Riefer, M., Ternis, S.F., Thaler, T.: Mining process models from natural language text: a state-of-the-art analysis. Multikonferenz Wirtschaftsinformatik (MKWI 2016), pp. 9–11, March 2016Google Scholar
  4. 4.
    Kluza, K., Honkisz, K.: From SBVR to BPMN and DMN models. Proposal of translation from rules to process and decision models. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 453–462. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_39CrossRefGoogle Scholar
  5. 5.
    Ghose, A., Koliadis, G., Chueng, A.: Process discovery from model and text artefacts. In: 2007 IEEE Congress on Services, pp. 167–174, July 2007Google Scholar
  6. 6.
    de Almeida Rodrigues Goncalves, J.C., Santoro, F.M., Baiao, F.A.: Business process mining from group stories. In: 13th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2009, pp. 161–166. IEEE (2009)Google Scholar
  7. 7.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21640-4_36CrossRefGoogle Scholar
  8. 8.
    Kluza, K., Wiśniewski, P., Jobczyk, K., Ligęza, A., Suchenia Mroczek, A.: Comparison of selected modeling notations for process, decision and system modeling. In: FedCSIS 2017, pp. 1095–1098. IEEE (2017)Google Scholar
  9. 9.
    Yue, T., Briand, L.C., Labiche, Y.: An automated approach to transform use cases into activity diagrams. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 337–353. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13595-8_26CrossRefGoogle Scholar
  10. 10.
    Njonko, P.B.F., El Abed, W.: From natural language business requirements to executable models via SBVR. In: 2012 International Conference on Systems and Informatics (ICSAI), pp. 2453–2457 (2012)Google Scholar
  11. 11.
    Ferreira, R.C.B., Thom, L.H., de Oliveira, J.P.M., Avila, D.T., dos Santos, R.I., Fantinato, M.: Assisting process modeling by identifying business process elements in natural language texts. In: de Cesare, S., Frank, U. (eds.) ER 2017. LNCS, vol. 10651, pp. 154–163. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70625-2_15CrossRefGoogle Scholar
  12. 12.
    Sokolov, K., Timofeev, D., Samochadin, A.: Process extraction from texts using semantic unification. In: KMIS, pp. 254–259 (2015)Google Scholar
  13. 13.
    Kluza, K., Wiśniewski, P.: Spreadsheet-based business process modeling. In: FedCSIS 2016, pp. 1355–1358. IEEE (2016)Google Scholar
  14. 14.
    Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use of the business process modeling notation. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69534-9_35CrossRefGoogle Scholar
  15. 15.
    Nalepa, G., Slazynski, M., Kutt, K., Kucharska, E., Luszpaj, A.: Unifying business concepts for SMEs with Prosecco ontology. In: FedCSIS 2015, pp. 1321–1326 (2015)Google Scholar
  16. 16.
    Klimek, R.: A system for deduction-based formal verification of workflow-oriented software models. Int. J. Appl. Math. Comput. Sci. 24(4), 941–956 (2014)CrossRefGoogle Scholar
  17. 17.
    Wang, W., Indulska, M., Sadiq, S.: Guidelines for business rule modeling decisions. J. Comput. Inf. Syst. 58(4), 363–373 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Krzysztof Honkisz
    • 1
  • Krzysztof Kluza
    • 1
  • Piotr Wiśniewski
    • 1
  1. 1.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations