Investigation on Pulsating Liquid Jet with Physiological Saline on Aluminium Surface

  • Akash NagEmail author
  • Sergej Hloch
  • Amit Rai Dixit
  • Dominik Cuha
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The paper deals with an experimental study related to the influence of technological parameter namely standoff distance and fluid pressure over disintegration depth created on aluminium surface. The fluid used for disintegration is 0.9% physiological saline. This saline solution with density 1.008 kg/m3 higher than water 0.998 kg/m3, when impacts the surface induces a larger force leading to deeper disintegration grooves keeping other parameters constant. Special nozzle having diameter of 0.3 mm and 100 mm length was used during disintegration process. A minimal pressure ranging from 8 MPa to 16 MPa along with standoff distance of 1 mm to 6 mm is varied to observe its interactional effect over the depth formed during disintegration process. Groove depth was measured using FRT device in which 10 readings of each groove were recorded and their mean were considered for further analysis. The results concluded that for intermediate values of standoff distance (3–4 mm) and higher fluid pressure (13–16 MPa), deeper grooves were observed. Deepest mean groove observed within the experimental domain was of 183 µm deep at 2 mm standoff distance and 16 MPa fluid pressure. The experiments concluded that saline jet can be used for disintegration of material effectively.


Pulsating liquid jet Physiological saline Aluminium Depth Profile 


  1. 1.
    Barham, D.K., Buchanan, D.J.: A review of water jet assisted cutting techniques for rock and coal cutting machines. Min. Eng. 6–14 (1987)Google Scholar
  2. 2.
    Folkes, J.: Waterjet—An innovative tool for manufacturing. J. Mater. Process. Technol. 209, 6181–6189 (2009)CrossRefGoogle Scholar
  3. 3.
    Van den Berg, R.W., Hoogland, H., Lelieveld, H.L.M., Van Schepdael, L.: High pressure equipment designs for food processing applications. In: Ultra High Pressure Treatments of Foods, pp. 297–313. Springer (2001)Google Scholar
  4. 4.
    Ozcelik, Y., Tercan, A.E., Yilmazkaya, E., Ciccu, R., Costa, G.: A Study of nozzle angle in stone surface treatment with water jets. Constr. Build. Mater. 25, 4271–4278 (2011)CrossRefGoogle Scholar
  5. 5.
    Kong, C.: Water-Jet Cutting BT - CIRP Encyclopedia of Production Engineering. Presented at the (2014)Google Scholar
  6. 6.
    Hloch, S., Hlaváček, J., Vasilko, K., Cárach, J., Samardžić, I., Kozak, D., Hlavatý, I., Ščučka, J.J., Klich, J., Klichová, D.: Abrasive waterjet (AWJ) titanium tangential turning evaluation. Metalurgija 53, 537–540 (2014)Google Scholar
  7. 7.
    Cárach, J., Hloch, S., Petrů, J., Nag, A., Gombár, M., Hromasová, M.: Hydroabrasive disintegration of rotating Monel K-500 workpiece. Int. J. Adv. Manuf. Technol. 96, 981–1001 (2018)Google Scholar
  8. 8.
    Nag, A., Srivastava, A.K., Dixit, A.R., Chattopadhyaya, S., Mandal, A., Klichová, D., Hlaváček, P., Zeleňák, M., Hloch, S.: Influence of abrasive water jet turning parameters on variation of diameter of hybrid metal matrix composite. In: Applications of Fluid Dynamics, pp. 495–504. Springer (2018)Google Scholar
  9. 9.
    Nag, A., Ščučka, J., Hlavacek, P., Klichová, D., Srivastava, A.K., Hloch, S., Dixit, A.R., Foldyna, J., Zelenak, M.: Hybrid aluminium matrix composite AWJ turning using olivine and Barton garnet. Int. J. Adv. Manuf. Technol. 94, 2293–2300 (2018)CrossRefGoogle Scholar
  10. 10.
    Azmir, M.A., Ahsan, A.K.: Investigation on glass/epoxy composite surfaces machined by abrasive water jet machining. J. Mater. Process. Technol. 198, 122–128 (2008)CrossRefGoogle Scholar
  11. 11.
    Honl, M., Rentzsch, R., Müller, G., Brandt, C., Bluhm, A., Hille, E., Louis, H., Morlock, M.: The use of water-jetting technology in prostheses revision surgery—first results of parameter studies on bone and bone cement. J. Biomed. Mater. Res., Part A 53, 781–790 (2000)CrossRefGoogle Scholar
  12. 12.
    Nebeker, E.B., Rodriguez, S.E.: Percussive water jets for rock cutting. In: Proceedings of the Third International Symposium on Jet Cutting Technology, pp. 11–13 (1976)Google Scholar
  13. 13.
    Shen, Z.H., Wang, Z.M.: Theoretical analysis of a jetdriven Helmholtz resonator and effect of its configuration on the water jet cutting property. In: Proceedings of the 9th Int. Symposium of Jet Cutting Technology/Cranfield, pp. D4–189 (1988)Google Scholar
  14. 14.
    Vijay, M.M.: Ultrasonically generated cavitating or interrupted jet (1992)Google Scholar
  15. 15.
    Foldyna, J., Svehla, B.: Method of generation of pressure pulsations and apparatus for implementation of this method (2010)Google Scholar
  16. 16.
    Hloch, S., Foldyna, J., Sitek, L., Zeleňák, M., Hlaváček, P., Hvizdoš, P., Kľoc, J., Monka, P., Monková, K., Kozak, D., Magurová, D.: Disintegration of bone cement by continuous and pulsating water jet. Tech. Gaz. 20, 593–598 (2013)Google Scholar
  17. 17.
    Foldyna, J., Sitek, L., Ščučka, J., Martinec, P., Valíček, J., Páleníková, K.: Effects of pulsating water jet impact on aluminium surface. J. Mater. Process. Technol. 209, 6174–6180 (2009)CrossRefGoogle Scholar
  18. 18.
    Lehocka, D., Klich, J., Foldyna, J., Hloch, S., Krolczyk, J.B., Carach, J., Krolczyk, G.M.: Copper alloys disintegration using pulsating water jet. Meas. J. Int. Meas. Confed. 82, 375–383 (2016)CrossRefGoogle Scholar
  19. 19.
    Foldyna, J., Klich, J., Hlavacek, P., Zelenak, M., Scucka, J.: Erosion of Metals by Pulsating Water Jet. Teh. Vjesn. Gaz. 19, 381–386 (2012)Google Scholar
  20. 20.
    Bodnárová, L., Sitek, L., Hela, R., Foldyna, J.: New potentional of high-speed water jet technology for renovating concrete structures. Slovak J. Civ. Eng. 19, 1–7 (2011)CrossRefGoogle Scholar
  21. 21.
    Lehocká, D., Klichová, D., Foldyna, J., Hloch, S., Hvizdoš, P., Fides, M., Botko, F.: Comparison of the influence of acoustically enhanced pulsating water jet on selected surface integrity characteristics of CW004A copper and CW614 N brass. Measurement 110, 230–238 (2017)CrossRefGoogle Scholar
  22. 22.
    Hloch, S., Foldyna, J., Pude, F., Kľoc, J., Zeleňák, M., Hvizdoš, P., Monka, P., Smolko, I., Ščučka, J., Kozak, D.: Experimental in-vitro bone cements disintegration with ultrasonic pulsating water jet for revision arthroplasty. Teh. Vjesn. Znan. časopis Teh. Fak. Sveučilišta u Osijeku. 22, 1609–1615 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Akash Nag
    • 1
    Email author
  • Sergej Hloch
    • 2
    • 3
  • Amit Rai Dixit
    • 1
  • Dominik Cuha
    • 2
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  2. 2.Faculty of Manufacturing Technologies TU of Košice with the seat in PrešovPresovSlovak Republic
  3. 3.Institute of Geonics of the CASOstravaCzech Republic

Personalised recommendations