Advertisement

Fluid Film Pressure Description in Finite Turbulent Lubricated Journal Bearings by Using the Warner’s Theory

  • Alessandro Ruggiero
  • Roberto D’Amato
  • Nicolae Ungureanu
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The purpose of this paper is to propose a method for the analytical description of the non-steady fluid film for the liquid-lubricated finite journal bearings operating in a fully developed turbulent regime. The analytical description takes in account a symmetrical rigid rotor supported on two lubricated journal bearings under the classical assumptions of the Reynolds theory. The proposed methodology represents an extension of the Warner’s approach and allows to solve analytically in approximate way the equation governing the distribution of pressure in the bearing oil gap and then to obtain the analytical expressions for the unsteady fluid film forces giving particular attention to their continuity in the entire definition domain, introducing original analytical functions called “jump function”. The proposed model allows not only to minimize the computation time without any significant loss of accuracy in the nonlinear dynamic analysis of rotors on turbulent journal bearings but also permits a better readability of the parameter effects on the system unsteady behavior.

Keywords

Hydrodynamic lubrication Journal bearings Analytical method 

References

  1. 1.
    Lund, J.W.: Ph.d. thesis: Self-Excited, Stationary Whirl Orbits of a Journal in a sleeve bearing. Inst. Dept. of mechanics, N.Y. Rensselaer Polytechnic institute (1966)Google Scholar
  2. 2.
    Ruggiero, A., D’Amato, R., Magliano, E., Kozak, D.: Dynamical simulations of a flexible rotor in cylindrical uncavitated and cavitated lubricated journal bearings. Lubricants 6(2), 40–69 (2018)CrossRefGoogle Scholar
  3. 3.
    Ruggiero, A., Hloch, S., Kozak, D., Velasek, P.: Analytical fluid film force calculation in the case of short bearing with a fully developed turbulent flow. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 230(4), 395–401 (2016)CrossRefGoogle Scholar
  4. 4.
    Childs, D.: Turbomachinery Rotordynamics Phenomena, Modeling, and Analysis. Wiley, New York (1993)Google Scholar
  5. 5.
    Constantinescu, V.N.: Sliding Bearings. Allerton Press (1985)Google Scholar
  6. 6.
    Ruggiero, A., D’Amato, R., Merola, M., Valášek, P., Müller, M.: Tribological characterization of vegetal lubricants: comparative experimental investigation on Jatropha curcas L. oil, Rapeseed Methyl Ester oil, Hydrotreated Rapeseed oil. Tribol. Int. 109, 529–540 (2017)CrossRefGoogle Scholar
  7. 7.
    Ruggiero, A., D’Amato, R., Merola, M., Valášek, P., Müller, M.: On the tribological performance of vegetal lubricants: experimental investigation on Jatropha curcas L. oil. Procedia Eng. 149, 431–437 (2016)CrossRefGoogle Scholar
  8. 8.
    Ruggiero, A., D’Amato, R., Gómez, E.: Experimental analysis of tribological behavior of UHMWPE against AISI420C and against TiAl6V4 alloy under dry and lubricated conditions. Tribol. Int. 92, 154–161 (2015)CrossRefGoogle Scholar
  9. 9.
    Ruggiero, A., D’Amato, R., Gómez, E., Merola, M.: Experimental comparison on tribological pairs UHMWPE/TIAL6V4 alloy, UHMWPE/AISI316L austenitic stainless and UHMWPE/AL2O3 ceramic, under dry and lubricated conditions. Tribol. Int. 96, 349–360 (2016)CrossRefGoogle Scholar
  10. 10.
    Lahmar, M., Haddad, A., Nicolas, D.: An optimised short bearing theory for nonlinear dynamic analysis of turbulent journal bearings. Eur. J. Mech. A/Solids 19(1), 151–177 (2000)CrossRefGoogle Scholar
  11. 11.
    Frene, J., et al.: Hydrodynamic lubrication: bearings and thrust bearings, vol. 33. Elsevier (1997)Google Scholar
  12. 12.
    D’Agostino, V., Ruggiero, A., Senatore, A.: Unsteady oil film forces in porous bearings: analysis of permeability effect on the rotor linear stability. Meccanica 44(2), 207–214 (2009)CrossRefGoogle Scholar
  13. 13.
    Kirk, R.G., Gunter, E.J.: Short bearing analysis applied to rotor dynamics-Part 2: results of journal bearing response. J. Tribol. 98(2), 319–329 (1976)CrossRefGoogle Scholar
  14. 14.
    Kirk, R.G., Gunter, E.J.: Short bearing analysis applied to rotor dynamics-Part I: theory. J. Tribol. 98(1), 47–56 (1976)CrossRefGoogle Scholar
  15. 15.
    D’Agostino, V., Ruggiero, A., Senatore, A.: Approximate model for unsteady finite porous journal bearings fluid film force calculation. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 220(3), 227–234 (2006)CrossRefGoogle Scholar
  16. 16.
    Lund, J.W., Thomsen, K.K.: A calculation method and data for the dynamic coefficients of oil-lubricated journal bearings. Topics in fluid film bearing and rotor bearing system design and optimization 1000118 (1978)Google Scholar
  17. 17.
    Hashimoto, H., Wada, S.: Dynamic behavior of unbalanced rigid shaft supported on turbulent journal bearings-theory and experiment. J. Tribol. 112(2), 404–408 (1990)CrossRefGoogle Scholar
  18. 18.
    DuBois, G.B., Ocvirk, W.: Analytical derivation and experimental evaluation of short-bearing approximation for full journal bearing. Naca-report-1157 (1953)Google Scholar
  19. 19.
    Ruggiero, A., Gòmez, E., D’Amato, R.: Approximate closed-form solution of the synovial fluid film force in the human ankle joint with non-Newtonian lubricant. Tribol. Int. 157, 157–161 (2012)Google Scholar
  20. 20.
    Ruggiero, A., Gòmez, E., D’Amato, R.: Approximate analytical model for the squeeze-film lubrication of the human ankle joint with synovial fluid filtrated by articular cartilage. Tribol. Lett. 41(2), 337–343 (2011)CrossRefGoogle Scholar
  21. 21.
    Warner, P.C.: Static and dynamic properties of partial journal bearings. J. Basic Eng. 85, 247 (1963)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly
  2. 2.Department of Mechanical, Chemical and Industrial Design EngineeringUniversidad Politécnica de MadridMadridSpain
  3. 3.Faculty of EngineeringNorth University Center of Baia Mare, Technical University of Cluj NapocaMaramuresRomania

Personalised recommendations