Forces and Process Dynamics in Profiling of AlCu4MgSi Aluminium Alloy

  • Eugene Feldshtein
  • Piotr NieslonyEmail author
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


This work presents the results of experimental research regarding cutting force, chatter frequency and amplitude for different cooling conditions in profiling of AlCu4MgSi aluminium alloy. The following conditions were analyzed: dry cutting, cooling with water-based emulsion, MQL and MQCL. It was determined that cooling and lubricating conditions in the cutting zone have a minimal effect on machining forces in the following range of parameters: cutting speed 300–600 m/min, depth of cut 1–2 mm, feed rate 0.1–0.5 mm/rev. Therefore, a conclusion to introduce dry machining to cut down costs was formed. Changes in cutting force components can be described by the following relation: Fc ≈ Fp > Ff. The intensity of the effect of technological parameters on cutting force components decreases in the direction of f  ap → vc. It was proven that by analyzing changes of cutting force in machining time, possibilities of chatter occurrence for different machining conditions can be assessed.


Cutting force MQL MQCL Dry cutting 


  1. 1.
    Oczoś, K.E., Kawalec, A.: Kształtowanie metali lekkich. PWN, Warszawa (2012)Google Scholar
  2. 2.
    Songmene, V., Khettabi, R., Zaghbani, I., Kouam, J.A.D.: Machining and machinability of aluminum alloys. In: Tibor, K. (ed.) Aluminium Alloys, Theory and Applications, Canada (2011)Google Scholar
  3. 3.
    Fukui, H., Okida, J., Omori, N., Moriguchi, H., Tsuda, K.: Cutting performance of DLC coated tools in dry machining aluminum alloys. Surf. Coat. Technol. 187(1), 70–76 (2004)CrossRefGoogle Scholar
  4. 4.
    Sreejith, P.S.: Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions. Mater. Lett. 62(2), 276–278 (2008)CrossRefGoogle Scholar
  5. 5.
    Siddesh Kumar, N.G., Shiva Shankar, G.S., Ganesh, M.N., Vibudha, L.K.: Experimental investigations to study the cutting force and surface roughness during turning of aluminium metal matrix hybrid composites. Mater. Today: Proc. 4, 9371–9374 (2017)CrossRefGoogle Scholar
  6. 6.
    Wang, B., Liu, Z., Song, Q., Wan, Y., Shi, Z.: Proper selection of cutting parameters and cutting tool angle to lower the specific cutting energy during high speed machining of 7050-T7451 aluminum alloy. J. Clean. Prod. 129, 292–304 (2016)CrossRefGoogle Scholar
  7. 7.
    Adamski, W.: Wybrane kierunki zwiększania wydajności procesów skrawania. Mechanik 5–6, 540–546 (2009)Google Scholar
  8. 8.
    Obróbka skrawaniem stopów aluminium i magnezu. Praca zbiorowa. In: Kuczmaszewski, J., Zaleski, K. (eds.) Politechnika Lubelska, Lublin (2015)Google Scholar
  9. 9.
    Kishawy, H.A., Dumitrescu, M., Ng, E.G., Elbestawi, M.A.: Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy. Int. J. Mach. Tools Manuf 45(2), 219–227 (2005)CrossRefGoogle Scholar
  10. 10.
    Taavitsainen, V.M.T.: Experimental optimization and response surfaces. In: Varmuza, K. (ed.) Chemometrics in Practical Applications, pp. 91–138. In Tech, Rijeka (2012)Google Scholar
  11. 11.
    Sharma, A.K., Tiwari, A.K., Dixit, A.R.: Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. J. Clean. Prod. 127, 1–18 (2016)CrossRefGoogle Scholar
  12. 12.
    Stachurski, W., Sawicki, J., Wójcik, R., Nadolny, K.: Influence of application of hybrid MQL-CCA method of applying coolant during hob cutter sharpening on cutting blade surface condition. J. Clean. Prod. 171, 892–910 (2018)CrossRefGoogle Scholar
  13. 13.
    Chetan, B.C., Ghosh, S., Rao, P.V.: Wear behavior of PVD TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4 V superalloys under dry and MQL conditions. Ceram. Int. 42(13), 14873–14885 (2016)CrossRefGoogle Scholar
  14. 14.
    Maruda, R.W., Feldshtein, E., Legutko, S., Krolczyk, G.M.: Analysis of contact phenomena and heat exchange in the cutting zone under minimum quantity cooling lubrication conditions. Arab. J. Sci. Eng. 41(2), 661–668 (2016)CrossRefGoogle Scholar
  15. 15.
    Maruda, R.W., Legutko, S., Krolczyk, G.M., Lukianowicz, C., Stoic, A.: Effect of anti-wear additive on cutting tool and surface layer of workpiece state under MQCL conditions. Teh. Vjesn. - Tech. Gaz. 22(5), 1219–1223 (2015)Google Scholar
  16. 16.
    Maruda, R.W., Krolczyk, G.M., Wojciechowski, S., Zak, K., Habrat, W., Nieslony, P.: Effects of extreme pressure and anti-wear additives on surface topography and tool wear during MQCL turning of AISI 1045 steel. J. Mech. Sci. Technol. 32(4), 1585–1591 (2018)CrossRefGoogle Scholar
  17. 17.
    Maruda, R.W., Feldshtein, E., Legutko, S., Krolczyk, G.M.: Improving the efficiency of running – in for a bronze – stainless steel friction pair. J. Frict. Wear 36(6), 548–553 (2015)CrossRefGoogle Scholar
  18. 18.
    Maruda, R.W., Feldshtein, E., Legutko, S., Krolczyk, G.M.: Research emulsion mist generation in the conditions of minimum quantity cooling lubrication (MQCL). Teh. Vjesn. - Tech. Gaz. 22(5), 1213–1218 (2015)Google Scholar
  19. 19.
    Maruda, R.W., Krolczyk, G.M., Michalski, M., Nieslony, P., Wojciechowski, S.: Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. J. Mater. Eng. Perform. 26(1), 431–438 (2017)CrossRefGoogle Scholar
  20. 20.
    Krolczyk, G.M., Maruda, R.W., Krolczyk, J.B., Nieslony, P., Wojciechowski, S., Legutko, S.: Parametric and nonparametric description of the surface topography in the dry and MQCL cutting conditions. Measurement 121, 225–239 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of Zielona GoraZielona GoraPoland
  2. 2.Faculty of Mechanical EngineeringOpole University of TechnologyOpolePoland

Personalised recommendations