Change of the Substrate Surface After Removal Multiple Plasma Spraying Layers

  • Jozef KužmaEmail author
  • Michal Krescanko
  • Sergej Hloch
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The paper deals with the change of the surface properties of the substrate after the application of multiple plasma spraying NiCr. The influence of selected technological factors (substrate material, surface angle of the substrate and degreasing of the surface) on topography and surface quality of the substrates. Presented procedures and experimental results demonstrate surface resistance of individual materials from effect multiple plasma coatings. The best results of surface resistance have samples from chromium steel. In addition, the results of these experiments indicate which parameters are key in selecting the substrate material for the masking process in serial production of coatings by plasma spraying.


Plasma spraying Rationalization Serial production Surface quality Substrate 



Mean arithmetic deviation of roughness


Maximum height of the roughness profile

HVm max

Maximum value of microhardness according to Vickers

HVm min

Minimum value of microhardness according to Vickers

HVm avg

Average value of microhardness according to Vickers


Coefficient of thermal expansion


Ultimate tensile strength



Research knowledge can be used in the engineering industry, where plasma coating is used. Primary, the research results can also be used to rationalization the plasma coating process for serial production and next research and development of material resistance to the plasma coating.

Next recommended research should be to compare the HVm and surface roughness after double removal plasma coatings (24 times coating). Also, more detailed research of multiple plasma coating on material Chromium Steel because, material Chromium steel had the best resistance from negative effects of multiple plasma spraying, but there was a big deviation of HVm on the sample No. 14 (degrease + 45°).


  1. 1.
    Aubrecht, V.: Technické aplikace plazmatu. Vutium, Brno (2003)Google Scholar
  2. 2.
    Ambrož, O., Kašpar, J.: Žárové nástřiky a jejich průmyslové využití. 1. vyd. Praha: SNTL, 320 p. (1990)Google Scholar
  3. 3.
    Tucker R.C. (ed.): ASM Handbook, vol. 5A, Thermal Spray Technology. ASM International (2013)Google Scholar
  4. 4.
    Steffens, H.D., Nassenstein, K.: Thermal spraying: a review of 1993. Powder Metall. Int. 25(6), 280–284 (1993)Google Scholar
  5. 5.
    Suryanarayanan, R.: Plasma Spraying: Theory and Applications. CNRS, London (1993)CrossRefGoogle Scholar
  6. 6.
    Westergard, R., Axen, N., Wiklund, U., Hogmark, S.: An evaluation of plasma sprayed ceramic coatings by erosion, abrasion and bend testing. Wear 246, 12–19 (2000)CrossRefGoogle Scholar
  7. 7.
    Jankura, D., Papcun, P.: Evaluation of structure of ceramics and composite coatings prepared by heating sprying. Mechanika 270(78), 25–29 (2009)Google Scholar
  8. 8.
    Houdková Šimůnková, Š., Enžl, R., Bláhova, O.: Žárové nástřiky: moderní technologie povrchových úprav Plzeň (2003)Google Scholar
  9. 9.
    Gardon, M., Guilemany, J.M.: Therm. Spray Technol. 23, 577 (2014)CrossRefGoogle Scholar
  10. 10.
    Fauchais, P., Heberlein, J., Boulos, M.: Thermal Spray Fundamentals. Springer, New York (2014)CrossRefGoogle Scholar
  11. 11.
    Skočovský, P., Konečná, R.: Nové konštrukčné materiály – Vybrané kapitoly II, ŽU (1996)Google Scholar
  12. 12.
    Svenson, E.: Plating Resources, Inc. Cocoa, Florida, USA (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Manufacturing, Faculty of Manufacturing TechnologiesTechnical University of KosiceKosiceSlovakia

Personalised recommendations