Advertisement

Time-Dependent Feed Force Modelling to Apply Feed Rate Strategies in the Drilling of Unsupported CFRP-Structures

  • Fabian Lissek
  • Sergej Hloch
  • Michael Kaufeld
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

In the drilling of flexible work pieces, the work piece movement makes the prediction of the machining time more difficult. This is due to the variance between the defined machining parameters and the effective machining conditions at the cutting edges. Consequently, feed rate strategies cannot be applied on the basis of the machining parameters. Therefore, a mechanistic modelling approach will be presented, which allows to calculate the feed forces in an unsteady drilling process. Thereby, the relative position between work piece and drilling tool can be known at any time. The model allows the consideration of the tool geometry, whereby drilling processes with state of the art step drills can be simulated. In the end, the prediction of characteristic drilling phases can be used to determine the timing to apply feed rate strategies to reduce push-out delamination. The practicability of the simulation and the efficiency of two different feed rate strategies will be shown for unsupported drilling processes with the typical aeronautics composite material M21/T800S.

Keywords

CFRP M21/T800S Aeronautics Drilling Step drill Feed rate strategies Unsupported Flexible Mechanistic modeling Time-dependent Specific feed force Delamination 

References

  1. 1.
    Heumer, W.: Meisterprüfung für den Bohrer. VDI-Nachr. 37, 13–14 (2014)Google Scholar
  2. 2.
    Müller-Hummel, P., Richter, J., Möller, B.: Neue Werkstoffe erfordern neue Allianzen. Werkstatt Betr. 10, 66–67 (2008)Google Scholar
  3. 3.
    Enßle, M.: Zusammenspiel von Fertigungsmittel un Zerspanstrategie bei der Bearbeitung von Faserverbund-Bauteilen für die Luftfahrt: Einfluss der Werkstückeinspannung. In: Bearbeitung von Verbundwerkstoffen: Spanende Bearbeitung von CFK, Stuttgart (2013)Google Scholar
  4. 4.
    Klotz, S., Gerstenmeyer, M., Zanger, F., Schulze, V.: Influence of clamping systems during drilling of carbon fiber reinforced plastics. Procedia CIRP 13, 208–213 (2014)CrossRefGoogle Scholar
  5. 5.
    Capello, E.: Workpiece damping and its effect on delamination damage in drilling thin composite laminates. J. Mater. Process. Technol. 2(148), 186–195 (2004)CrossRefGoogle Scholar
  6. 6.
    Heberger, L., Nissle, S., Gurka, M., Kirsch, B., Aurich, J.C.: Qualitätssteigerung von Bohrugen in Faserkunststoffverbunden: Untersuchung des Einflusses verschiedener Einspannstrategien. Werkstattstech. Online 105(7/8), 501–507 (2015)Google Scholar
  7. 7.
    Dogrusadik, A., Kentli, A.: Comparative assessment of support plates’ influences on delamination damage in micro-drilling of CFRP-Laminates. Compos. Struct. 173, 156–167 (2017)CrossRefGoogle Scholar
  8. 8.
    Lissek, F., Kaufeld, M.: Aufs Abstützen kommt es an: Bearbeitungskriterien für die Zerspanung labiler CFK-Strukturen. Werkstatt Betr. 12, 36–40 (2019)Google Scholar
  9. 9.
    Eisseler, R., Jakob, P., Schaal, M., Weiland, S.: Bohren von CFK. In: Bearbeitung von Verbundwerkstoffen: Spanende Bearbeitung von CFK, Stuttgart (2013)Google Scholar
  10. 10.
    König, W., Wulf, C., Graß, P., Willerscheid, H.: Machining of fiber reinforced plastics. CIRP Ann. 34(2), 537–548 (1985)CrossRefGoogle Scholar
  11. 11.
    Lissek, F., Bergmann, J.-P., Kaufeld, M.: Machining of CFRP: drilling and milling of unstable work pieces. In: 58th Ilmenau Scientific Colloquium, Ilmenau (2014)Google Scholar
  12. 12.
    Klotz, S., Lepold, A., Zanger, F., Schulze, V.: Experimental investigation of clamping systems and the resulting change of cutting conditions while drilling carbon fiber reinforced plastics. Procedia CIRP 62, 15–20 (2017)CrossRefGoogle Scholar
  13. 13.
    Marcus, H.: Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten unter besonderer Berücksichtigung der trägerlosen Pilzdecken. Springer, Berlin (1932)zbMATHGoogle Scholar
  14. 14.
    Stiglat, K., Wippel, K.: Platten. Wiley Verlag GmbH & Co. KGaA, Weinheim (1973)Google Scholar
  15. 15.
    Luo, B., Li, Y., Zhang, K., Cheng, H., Liu, S.: Effect of workpiece stiffness on thrust force and delamination in drilling thin composite laminates. J. Compos. Mater. 5(50), 617–625 (2015)Google Scholar
  16. 16.
    Lazar, M.-B., Xirouchakis, P.: Mechanical load distribution along the main cutting edges in drilling. J. Mater. Process. Technol. 213(2), 245–260 (2013)CrossRefGoogle Scholar
  17. 17.
    Schmid, M., Schmid, S., Hintze, W., Clausen, R., Schütte, C.: Patentschrift Fiber Cracker. Deutschland Patent DE 10 2010 012 963 A1 (2010)Google Scholar
  18. 18.
    Victor, H.: Beitrag zur Kenntnis der Schnittkräfte beim Drehen, Hobeln und Bohren. Dissertation, München, Technische Hochschule Hannover (1956)Google Scholar
  19. 19.
    Kienzle, O.: Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. VDI-Z Integr. Prod. 94, 299–305 (1952)Google Scholar
  20. 20.
    Anand, R.S., Patra, K.: Mechanistic cutting force modelling for micro-drilling of CFRP composite laminates. CIRP J. Manufact. Sci. Technol. 16, 55–63 (2017)CrossRefGoogle Scholar
  21. 21.
    Anand, R.S., Patra, K.: Size effects in micro drilling of carbon fiber reinforced plastic composite. Prod. Eng. 8(3), 301–304 (2014)CrossRefGoogle Scholar
  22. 22.
    Faraz, A., Biermann, D., Weinert, K.: Cutting edge rounding: an innovative tool wear criterion in drilling CFRP composite laminates. Int. J. Mach. Tools Manuf. 49(15), 1185–1196 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Production Engineering and Materials TestingUlm University of Applied SciencesUlmGermany
  2. 2.Department of Manufacturing TechnologiesFaculty of Manufacturing Technologies TU of KošicePrešovSlovak Republic

Personalised recommendations