Advertisement

The Influence of the Application of EP Additive in the Minimum Quantity Cooling Lubrication Method on the Tool Wear and Surface Roughness in the Process of Turning 316L Steel

  • Radoslaw W. Maruda
  • Stanislaw Legutko
  • Jolanta B. Krolczyk
  • Szymon Wojciechowski
  • Wlodzimierz Kot
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The paper presents the influence of the application of the EP additive based on pure phosphor in minimum quantity cooling lubrication. During investigation, three methods of cooling the cutting zone have been applied in the process of turning 316L steel: dry machining, MQCL, MQCL + EP. The wear of the tool depending on the cooling method has been monitored, as well as its influence on the machined surface roughness. Scanning analysis has shown formation of a tribofilm as result of the application of the EP additive on the surface of a plate with (Ti, Al) N coating deposited by the PVD method. Experimental evidence suggests that the application of the MQCL + EP method results in reduction of the VBB parameter as compared to dry machining and cooling with emulsion mist up to the moment of the tool coating damage. It has been found that, as result of the application of the EP additive in the MQCL method, after damage of the (Ti, Al) N coating rapid increase of the tool wear takes place and, consequently, increase of the machined surface, which is due to the reaction with the base material (sintered carbide). This is caused by the chemical action of pure phosphor without the carbon matrix on the exposed area of the tool made of sintered carbide; the latter appears as result of adhesive wear of the coating

Keywords

Additives EP Tool wear Surface roughness MQCL Dry cuting 

References

  1. 1.
    Maruda, R.W., Krolczyk, G.M., Feldshtein, E., Pusavec, F., Szydlowski, M., Legutko, S., Sobczak-Kupiec, A.: A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int. J. Mach. Tools Manuf. 100, 81–92 (2016)CrossRefGoogle Scholar
  2. 2.
    Kujawinska, A., Diering, M., Rogalewicz, M., Żywicki, K., Hetman, Ł.: Soft modelling-based methodology of raw material waste estimation. In: Burduk, A., Mazurkiewicz, D. (eds.) Intelligent Systems in Production Engineering and Maintenance – ISPEM 2017. Advances in Intelligent Systems and Computing, vol. 637. Springer, Cham (2018)CrossRefGoogle Scholar
  3. 3.
    Kujawinska, A., Diering, M., Zywicki, K., Rogalewicz, M., Hamrol, A., Hoffmann, P., Konstanczak, M.: Methodology supporting the planning of machining allowances in the wood industry. In: SOCO. Springer, Leon (2017)Google Scholar
  4. 4.
    Maruda, R.W., Krolczyk, G.M., Feldshtein, E., Nieslony, P., Tyliszczak, B., Pusavec, F.: Tool wear characterizations in finish turning of AISI 1045 carbon steel for MQCL conditions. Wear 372–373, 54–67 (2017)CrossRefGoogle Scholar
  5. 5.
    Tai, B.L., Stephenson, D.A., Furness, R.J., Shih, A.J.: Minimum quantity lubrication (MQL) in automotive powertrain machining. Procedia CIRP 14, 523–528 (2014)CrossRefGoogle Scholar
  6. 6.
    Bustillo, A., Pimenov, DYu., Matuszewski, M., Mikolajczyk, T.: Using artificial intelligence models for the prediction of surface wear based on surface isotropy levels. Robot. Comput. Integr. Manuf. 53, 215–227 (2018)CrossRefGoogle Scholar
  7. 7.
    Matuszewski, M., Mikolajczyk, T., Pimenov, DYu., Styp-Rekowski, M.: Influence of the structure of the isotropy of the machined surface on the wear process. Int. J. Adv. Manuf. Technol. 88(9), 2477–2483 (2017)CrossRefGoogle Scholar
  8. 8.
    Su, G.S., Guo, Y.K., Song, X.L., Tao, H.: Effects of high-pressure cutting fluid with different jetting paths on tool wear in cutting compacted graphite iron. Tribol. Int. 103, 289–297 (2016)CrossRefGoogle Scholar
  9. 9.
    Maruda, R.W., Feldshtein, E., Legutko, S., Krolczyk, G.M.: Research emulsion mist generation in the conditions of minimum quantity cooling lubrication (MQCL). Teh. Vjesn. – Tech. Gaz. 22(5), 1213–1218 (2015)Google Scholar
  10. 10.
    Li, B., Li, C., Zhang, Y., Wang, Y., Yang, M., Jia, D., Zhang, N., Wu, Q.: Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy. Int. J. Adv. Manuf. Technol. 89(9–12), 3459–3474 (2017)CrossRefGoogle Scholar
  11. 11.
    Maruda, R.W., Krolczyk, G.M., Michalski, M., Nieslony, P., Wojciechowski, S.: Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. J. Mater. Eng. Perform. 26(1), 431–438 (2017)CrossRefGoogle Scholar
  12. 12.
    Stachurski, W., Sawicki, J., Wójcik, R., Nadolny, K.: Influence of application of hybrid MQL-CCA method of applying coolant during hob cutter sharpening on cutting blade surface condition. J. Clean. Prod. 171, 892–910 (2018)CrossRefGoogle Scholar
  13. 13.
    Maruda, R.W., Feldshtein, E., Legutko, S., Krolczyk, G.M.: Analysis of contact phenomena and heat exchange in the cutting zone under minimum quantity cooling lubrication conditions. Arab. J. Sci. Eng. 41(2), 661–668 (2016)CrossRefGoogle Scholar
  14. 14.
    Outeiro, J.C., Umbrello, D., Saoubi, R.M.: Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel. Int. J. Mach. Tools Manuf. 46(14), 1786–1794 (2006)CrossRefGoogle Scholar
  15. 15.
    Manimaran, G., Pradeep Kumar, M., Venkatasamy, R.: Influence of cryogenic cooling on surface grinding of stainless steel 316. Cryogenics 59, 76–83 (2014)CrossRefGoogle Scholar
  16. 16.
    Evans, C., Bryan, J.B.: Cryogenic diamond turning of stainless steel. CIRP Ann. 40(1), 571–575 (1991)CrossRefGoogle Scholar
  17. 17.
    Okada, M., Hosokawa, A., Asakawa, N., Ueda, T.: End milling of stainless steel and titanium alloy in an oil mist environment. Int. J. Adv. Manuf. Technol. 74(9–12), 1255–1266 (2014)CrossRefGoogle Scholar
  18. 18.
    Chuangwen, X., Ting, X., Huaiyuan, L., Zhicheng, S., Hongbing, J., Mandong, L.: Friction, wear, and cutting tests on 022Cr17Ni12Mo2 stainless steel under minimum quantity lubrication conditions. Int. J. Adv. Manuf. Technol. 90(1–4), 677–689 (2017)CrossRefGoogle Scholar
  19. 19.
    Xu, X., Huang, S., Wang, M., Yao, W.: A study on process parameters in end milling of AISI-304 stainless steel under electrostatic minimum quantity lubrication conditions. Int. J. Adv. Manuf. Technol. 90(1–4), 979–989 (2017)CrossRefGoogle Scholar
  20. 20.
    Krolczyk, G.M., Maruda, R.W., Nieslony, P., Wieczorowski, M.: Surface morphology analysis of Duplex Stainless Steel (DSS) in clean production using the power spectral density. Measurement 94, 464–470 (2016)CrossRefGoogle Scholar
  21. 21.
    Weinert, K., Inasaki, I., Sutherland, J.W., Wakabayashi, T.: Dry machining and minimum quantity lubrication. CIRP Ann.-Manuf. Technol. 53(2), 511–537 (2004)CrossRefGoogle Scholar
  22. 22.
    Duchosal, A., Werda, S., Serra, R., Courbon, C., Leroy, R.: Experimental method to analyze the oil mist impingement over an insert used in MQL milling process. Measurement 86, 283–292 (2016)CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Li, C., Jia, D., Li, B., Wang, Y., Yang, M., Hou, Y., Zhang, X.: Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J. Mater. Process. Technol. 232, 100–115 (2016)CrossRefGoogle Scholar
  24. 24.
    Dhar, N.R., Islam, M.W., Islam, S., Mithu, M.A.H.: The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. J. Mater. Process. Technol. 171(1), 93–99 (2006)CrossRefGoogle Scholar
  25. 25.
    Itoigawa, F., Childs, T.H.C., Nakamura, T., Belluco, W.: Effects and mechanisms in minimal quantity lubrication machining of an aluminum alloy. Wear 260(3), 339–344 (2006)CrossRefGoogle Scholar
  26. 26.
    Jayal, A.D., Balaji, A.K.: Effects of cutting fluid application on tool wear in machining: Interactions with tool-coatings and tool surface features. Wear 267(9–10), 1723–1730 (2009)CrossRefGoogle Scholar
  27. 27.
    Maruda, R.W., Legutko, S., Krolczyk, G.M., Lukianowicz, C., Stoic, A.: Effect of anti-wear additive on cutting tool and surface layer of workpiece state under MQCL conditions. Teh. Vjesn. – Tech. Gaz. 22(5), 1219–1223 (2015)Google Scholar
  28. 28.
    Su, Y., Gong, L., Li, B., Liu, Z., Chen, D.: Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. Int. J. Adv. Manuf. Technol. 83(9–12), 2083–2089 (2016)CrossRefGoogle Scholar
  29. 29.
    Maruda, R.W., Krolczyk, G.M., Nieslony, P., Wojciechowski, S., Michalski, M., Legutko, S.: The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J. Manuf. Process. 24, 107–115 (2016)CrossRefGoogle Scholar
  30. 30.
    Vieira, J.M., Machado, A.R., Ezugwu, E.O.: Performance of cutting fluids during face milling of steels. J. Mater. Process. Technol. 116(2–3), 244–251 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Radoslaw W. Maruda
    • 1
  • Stanislaw Legutko
    • 2
  • Jolanta B. Krolczyk
    • 3
  • Szymon Wojciechowski
    • 2
  • Wlodzimierz Kot
    • 1
  1. 1.Faculty of Mechanical EngineeringUniversity of Zielona GoraZielona GoraPoland
  2. 2.Faculty of Mechanical Engineering and ManagementPoznan University of TechnologyPoznanPoland
  3. 3.Faculty of Mechanical EngineeringOpole University of TechnologyOpolePoland

Personalised recommendations