Advertisement

Additive Printing of Gold Nanoparticles on Paper Substrate Through Office Ink-Jet Printer

  • Mohammed Shariq
  • Amit Rai Dixit
  • Rupert Kargl
  • Somnath Chattopadhyaya
  • Meduri Venkata Sridutt
  • Pasagada Venkata Keerti Vardhan
  • Rebeka Rudolf
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The article reports the synthesis of the concentrated Gold Nanoparticles (AuNPs) ink and its printing on the paper substrate through Office Ink Jet printer. Initially, AuNPs were synthesized from the precursor Gold (III) Acetate through Ultrasonic Spray Pyrolysis. Ellipsoidal shaped AuNPs with a size distribution of below 50 nm were confirmed through TEM and DLS measurement. Maximum absorbance wavelength of AuNPs measured through UV-vis spectroscopy was 532 nm. Further, the AuNPs ink was prepared through the rotavapour and filtered upto the Au concentration of 600 ppm determined through ICP-OES. The AuNPs printed patterns on the photo paper substrate were successfully printed and further analyzed with SEM.

Keywords

Gold Nanoparticles Synthesis Printing Office ink jet printer Paper substrate 

Abbreviations

AuNPs

Gold Nanoparticles

LED

Light Emitting Diodes

TFT

Thin Film Transistors

USP

Ultrasonic Spray Pyrolysis

TEM

Transmission Electron Microscopy

DLS

Dynamic Light Scattering

UV-vis

Ultra-violet visible spectroscopy

ICP-OES

Inductively Coupled Plasma with Mass Optical Emission Spectroscopy

AFM

Atomic Force Microscopy

SEM

Scanning Electron Microscopy

PVP40

Polyvinylpyrrolidone

D.I.

De-ionized water

Notes

Acknowledgement

The study was supported by the European Union – Erasmus Mundus Action 2 Lot 13 Euphrates Program and Slovenian Research Agency ARRS Slovenia (P2-120, Martina Program and OP20.00369).

References

  1. 1.
    Cui, W., Lu, W., Zhang, Y., Lin, G., Wei, T., Jiang, L.: Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology. Colloids Surf. A Physicochem. Eng. Asp. 358(1–3), 35–41 (2010)CrossRefGoogle Scholar
  2. 2.
    Khan, Y., Pavinatto, F.J., Lin, M.C., Liao, A., Swisher, S.L., Mann, K., Subramanian, V., Maharbiz, M.M., Arias, A.C.: Inkjet-printed flexible gold electrode arrays for bioelectronic interfaces. Adv. Funct. Mater. 26, 1004–1013 (2016)CrossRefGoogle Scholar
  3. 3.
    Määttänen, A., Ihalainen, P., Pulkkinen, P., Wang, S., Tenhu, H., Peltonen, J.: Inkjet-printed gold electrodes on paper: characterization and functionalization. ACS Appl. Mater. Interfaces. 4(2), 955–964 (2012)CrossRefGoogle Scholar
  4. 4.
    Yoshioka, Y., Jabbour, G.: Inkjet printing of oxidants for patterning of nanometer-thick conducting polymer electrodes. Adv. Mater. 18, 1307–1312 (2006)CrossRefGoogle Scholar
  5. 5.
    Bietsch, A., Zhang, J., Hegner, M., Lang, H.P., Gerber, C.: Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15, 873 (2004)CrossRefGoogle Scholar
  6. 6.
    Jang, J.: Displays develop a new flexibility. Mater. Today 9(4), 46 (2006)CrossRefGoogle Scholar
  7. 7.
    Derby, B.: Inkjet printing ceramics: from drops to solid. J. Eur. Ceram. Soc. 31, 2543–2550 (2011)CrossRefGoogle Scholar
  8. 8.
    Boland, T., Xu, T., Damon, B., Cui, X.: Application of inkjet printing to tissue engineering. Biotechnol. J. 1, 910–917 (2006)CrossRefGoogle Scholar
  9. 9.
    Rudolf, R., Majerić, P., Tomić, S., Shariq, M., Fercec, U., Friedrich, B., Vučevićc, D.: Morphology, aggregation properties, cytocompatibility & anti-inflammatory potential of citrate-stabilized AuNPs prepared by modular ultrasonic spray pyrolysis. J. Nanomater. 2017, 9365012 (2017)CrossRefGoogle Scholar
  10. 10.
    Majerič, P., Rudolf, R., Anžel, I., Bogović, J., Stopić, S., Friedrich, B.: Synthesis of NiTi/Ni-TiO2 composite nanoparticles via ultrasonic spray pyrolysis. Mater. Technol. 49(1), 75–80 (2015)Google Scholar
  11. 11.
    Htay, M.T., Hashimoto, Y., Momose, N., Ito, K.: Position-selective growth of ZnO nanowires by ultrasonic spray pyrolysis. J. Cryst. Growth 311(20), 4499–4504 (2009)CrossRefGoogle Scholar
  12. 12.
    Montero, M.A., Chialvo, M.R.G., Chialvo, A.C.: Preparation of gold nanoparticles supported on glassy carbon by direct spray pyrolysis. J. Mater. Chem. 19(20), 3276–3280 (2009)CrossRefGoogle Scholar
  13. 13.
    Bogović, J.: Synthesis of the oxide and metal/oxide nanoparticles by the Ultrasonic Spray Pyrolysis. Ph.D. Dissertation, Faculty of the Georesources & Materials Engineering, RWTH Aachen University, Aachen (2015)Google Scholar
  14. 14.
    Majerič, P., Jenko, D., Friedrich, B., Rudolf, R.: Formation mechanisms for gold nanoparticles in a redesigned ultrasonic spray pyrolysis. Adv. Powder Technol. 28(3), 876–883 (2017)CrossRefGoogle Scholar
  15. 15.
    Majerič, P., Jenko, D., Budič, B., Colić, M., Friedrich, B., Rudolf, R.: Formation of non-toxic Au nanoparticles with bimodal size distribution by a modular redesign of ultrasonic spray pyrolysis. Nanosci. Nanotechnol. Lett. 7(11), 1–10 (2015)CrossRefGoogle Scholar
  16. 16.
    Shariq, M., Majerič, P., Friedrich, B., Budic, B., Dixit, A.R., Rudolf, R.: Application of Gold (III) Acetate as a new precursor for the synthesis of gold nanoparticles in PEG through ultrasonic spray pyrolysis. J. Clust. Sci. 28(3), 1647–1665 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia
  2. 2.Indian Institute of TechnologyIndian School of MinesDhanbadIndia
  3. 3.Laboratory for Characterization and Processing of Polymer, Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia
  4. 4.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria
  5. 5.Zlatarna Celje d.o.o.CeljeSlovenia

Personalised recommendations