Investigation on Feed Rate Influence on Surface Quality in Abrasive Water Jet Cutting of Composite Materials, Monitoring Acoustic Emissions

  • Ioan Alexandru Popan
  • Vlad Bocanet
  • Nicolae Balc
  • Alina Ioan Popan
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The paper deals an experimental study on cutting composite materials (CFRP) using abrasive water jet cutting (AWJC) process. The influence of the feed rate on surface roughness is studied using acoustic emission (AE) monitoring. For monitoring the process two acoustic emission sensors was mounted, on the CFRP workpiece and on the cutting head. This monitoring technique has proved that, between process parameter (feed rate and amplitude of AE signal) is a clear connection. The surface roughness can be predicted using online monitoring with acoustic emission (AE).


Water jet cutting Composite materials Acoustic emissions Surface roughness 



This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI–UEFISCDI, project number PN-III-P2-2.1-BG-2016-0216, within PNCDI III, Technical University of Cluj-Napoca through the research Contract no. 2001/12.07.2017, Internal Competition CICDI-2017 and the H2020 AMaTUC project (GA 691787).


  1. 1.
    Vitale, P., Francucci, G., Rapp, H., Stocchi, A.: Manufacturing and compressive response of ultra-lightweight CFRP cores. Comp. Struct. 194, 188–198 (2018)CrossRefGoogle Scholar
  2. 2.
    Popescu, A., Hancu, L., Bere, P.: Research concerning the optimum extrusion temperature for reinforced polyamide. Appl. Mech. Mater. 371, 394–398 (2013)CrossRefGoogle Scholar
  3. 3.
    Shanmugam, D.K.: A study of delamination on graphite/epoxy composites in abrasive waterjet machining. Comp. Part A 39, 923–929 (2008)CrossRefGoogle Scholar
  4. 4.
    Popan, I.A., Contiu, G., Campbell I.: Investigation on standoff distance influence on kerf characteristics in abrasive water jet cutting of composite materials. In: MATEC Web of Conferences, vol. 137, p. 01009 (2017)CrossRefGoogle Scholar
  5. 5.
    Rabani, A., Madariaga, J., Bouvier, C., Axinte, D.: An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling. J. Manuf. Process. 22, 99–107 (2016)CrossRefGoogle Scholar
  6. 6.
    Nag, A., Srivastava, A., Dixit, A., Chattopadhyaya, S., Mandal, A., Klichová, D., Hlaváček, P., Zeleňák, M., Hloch, S.: Influence of abrasive water jet turning parameters on variation of diameter of hybrid metal matrix composite. In: Applications of Fluid Dynamics, pp. 495–504 (2018)Google Scholar
  7. 7.
    Filip, A.C., Mihail, L.A., Vasiloni, M.A.: An experimental study on the dimensional accuracy of holes made by abrasive waterjet machining of Hardox steels. In: MATEC Web of Conferences, vol. 137, p. 02003 (2017)CrossRefGoogle Scholar
  8. 8.
    Popan, I.A., Balc, N., Carean, A., Luca, A., Ceclan, V.: Developing a new program to calculate the optimum water jet cutting parameters. Acad. J. Manuf. Eng. 9 (2011)Google Scholar
  9. 9.
    Putz, M., Rennau, A., Dix, M.: High precision machining of hybrid layer composites by abrasive waterjet cutting. Procedia Manuf. 21, 583–590 (2018)CrossRefGoogle Scholar
  10. 10.
    Deam, R.T., Lemma, E., Ahmed, D.H.: Modelling of the abrasive water jet cutting process. Wear 257(9–10), 877–891 (2004)CrossRefGoogle Scholar
  11. 11.
    Schwartzentruber, J., Spelt, J.K., Papini, M.: Prediction of surface roughness in abrasive waterjet trimming of fiber reinforced polymer composites. Int. J. Mach. Tools Manuf. 122, 1–17 (2017)CrossRefGoogle Scholar
  12. 12.
    Hloch, S., Valíček, J., Kozak, D., Tozan, H., Chattopadhyay, S., Adamčík, P.: Analysis of acoustic emission emerging during hydro abrasive cutting and options for indirect quality control. Int. J. Adv. Manuf. Technol. 66, 45–58 (2013)CrossRefGoogle Scholar
  13. 13.
    Lissek, F., Kaufeld, M., Tegas, J., Hloch, S.: Online-monitoring for abrasive waterjet cutting of CFRP via acoustic emission: evaluation of machining parameters and work piece quality due to burst analysis. In: ICMEM 2016. Procedia Engineering, vol. 149, pp. 67–76 (2016)CrossRefGoogle Scholar
  14. 14.
    Rabani, A., Marinescu, I., Axinte, D.: Acoustic emission energy transfer rate: a method for monitoring abrasive water jet milling. Int. J. Mach. Tools Manuf 61, 80–89 (2016)CrossRefGoogle Scholar
  15. 15.
    Tripathi, R., Srivastava, M., Hloch, S., Adamčík, P., Chattopadhyaya, S., Dasa, A.K.: Monitoring of acoustic emission during the disintegration of crock. In: International Conference on Manufacturing Engineering and Materials, ICMEM 2016. Procedia Engineering, vol. 149, pp. 481–488 (2016)CrossRefGoogle Scholar
  16. 16.
    Barry, J., Byrne, G., Lennon, D.: Observations on chip formation and acoustic emission in machining Ti–6Al–4V alloy. J. Mach. Tools Manuf. 41, 1055–1070 (2001)CrossRefGoogle Scholar
  17. 17.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ioan Alexandru Popan
    • 1
  • Vlad Bocanet
    • 1
  • Nicolae Balc
    • 1
  • Alina Ioan Popan
    • 1
  1. 1.Technical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations