Ionospheric Space Weather Forecasting and Modelling

  • Ljiljana R. CanderEmail author
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


Ionospheric weather prediction, specification, forecasting and modelling techniques that enable the realization of effective space weather products are described. In the future these may eventually be adopted and implemented by decision-making authorities for space environment specifications, warnings, and forecasts, all of which need to be timely, accurate, and reliable.


Ionospheric prediction Ionospheric forecasting Ionospheric specifications ANN 

References and Further Reading

  1. Araujo-Pradere EA, Fuller-Rowell TJ (2002) STORM: an empirical storm-time ionospheric correction model 2. Validation. Radio Sci. Scholar
  2. Araujo-Pradere EA, Fuller-Rowell TJ, Bilitza D (2003) Validation of the STORM response in IRI2000. J Geophys Res.
  3. Badeke R, Borries C, Hoque MM et al (2018) Empirical forecast of quiet time ionospheric total electron content maps over Europe. Adv Space Res. Scholar
  4. Bilitza D, Altadill D, Truhlik V et al (2017) International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15:418–429. Scholar
  5. Cander LR, Stanković S, Milosavljević M (1998) Dynamic ionospheric prediction by neural networks. In: AI applications in solar-terrestrial physics proceedings, ESA WPP-148:225–228Google Scholar
  6. Cander LR, Milosavljević M, Tomašević S (2003a) Ionospheric storm forecasting technique by artificial neural network. Annals of Geofis 46(4):719–724Google Scholar
  7. Cander LR, Bamford RA, Hickford JG (2003b) Nowcasting and forecasting the foF2, MUF(3000)F2 and TEC based on empirical models and real-time data. IEE Conference Proceedings 491(1):139–142Google Scholar
  8. Cander LR (2015) Forecasting foF2 and MUF (3000) F2 ionospheric characteristics-a challenging space weather frontier. Adv Space Res 56:1973–1981CrossRefGoogle Scholar
  9. Daniel O (2018) GPS modeling of the ionosphere using computer neural networks. In: Rustamov RB (ed) Multifunctional operation and application of GPS. Scholar
  10. Fausett L (1994) Fundamentals of neural networks. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  11. Galkin IA, Reinisch BW, Huang X et al (2012) Assimilation of GIRO data into a real-time IRI. Radio Sci. Scholar
  12. Haykin S (1994) Neural networks—a comprehensive foundation. Macmillan College Publishing Company, New YorkGoogle Scholar
  13. ITU-R (1997) Recommendations P Series-Part 1. International Telecommunications Union, GenevaGoogle Scholar
  14. Kersley L, Malan D, Pryse ES et al (2004) Total electron content—a key parameter in propagation: measurement and use in ionospheric imaging. Ann Geofis 47:1067–1091Google Scholar
  15. Lamming X, LR Cander (1999) Monthly median foF2 modelling COST251 area by neural networks. Phys Chem Earth 24:349–354Google Scholar
  16. Levi MF, LR Cander, Dick MI et al (1999) Real-time ionospheric forecasting. IRI News 6:1–5Google Scholar
  17. Liu R, Liu S, Xu Z et al (2006) Application of autocorrelation method on ionospheric short-term forecasting in China. Chin Sci Bull 51(3):352–357. Scholar
  18. Mir Reza GR, Voosoghi B (2016) Wavelet neural networks using particle swarm optimization training in modeling regional ionospheric total electron content. J Atmos Sol-Terr Phys 149:21–30CrossRefGoogle Scholar
  19. Moreno EM, Rigo AG, Hernández-Pajares M et al (2018) TEC forecasting based on manifold trajectories. Remote Sens:10. Scholar
  20. Muhtarov P, Kutiev I (1999) Autocorrelation method for temporal interpolation and short-term prediction of ionospheric data. Radio Sci 34:459–464CrossRefGoogle Scholar
  21. Oliver MA, Webster R (1990) Kriging: a method of interpolation for geographical information systems. Int J Geograph Info Sys 4:313–332Google Scholar
  22. Piggott WR, Rawer K (1972a) U.R.S.I. Handbook of ionogram interpretation and reduction. Report UAG-23. National Oceanic and Atmospheric Administration, BoulderGoogle Scholar
  23. Piggott WR, Rawer K (1972b) U.R.S.I. Handbook of ionogram interpretation and reduction. Report UAG-23A. Second Edition, Revision of Chaps. 1–4. National Oceanic and Atmospheric Administration, BoulderGoogle Scholar
  24. Pezzopane M, Pietrella M, Pignatelli A et al (2011) Assimilation of autoscaled data and regional and local ionospheric models as input sources for real-time 3-D International Reference Ionosphere modeling. Radio Sci 46 RS5009.
  25. Pezzopane M, Pietrella M, Pignatelli A et al (2013) Testing the three-dimensional IRI-SIRMUP-P mapping of the ionosphere for disturbed periods. Adv Space Res 52:1726–1736CrossRefGoogle Scholar
  26. Poole AWV, McKinnell LA (1998) Short term prediction of foF2 using neural networks. WDC Report UAG-105, pp 109–111Google Scholar
  27. Radicella SM (2010) The NeQuick model genesis, uses and evolution. Ann Geofis 52:239–243Google Scholar
  28. Tulunay E, Ozkaptan C, Tulunay Y (2000) Temporal and spatial forecasting of the foF2 values up to twenty four hours in advance. Phys Chem Earth 25:281–285CrossRefGoogle Scholar
  29. Tulunay E, Senalp ET, LR Cander et al (2004) Development of algorithms and software for forecasting, nowcasting and variability of TEC. Ann Geofis 47:1201–1214Google Scholar
  30. Vapnik V (1999) The nature of statistical learning theory. Springer, New YorkGoogle Scholar
  31. Wintoft P, LR Cander (2000) Twenty-four hour predictions of foF2 using time delay neural networks. Radio Sci 35(2):395–408Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.RAL Space, Science and Technology Facilities Council (STFC)Rutherford Appleton Laboratory (RAL)DidcotUK

Personalised recommendations