Advertisement

Ionospheric Storm Morphology

  • Ljiljana R. Cander
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

Covers the characteristics of the most significant ionospheric storms generated by space weather events and/or variable solar conditions during the last three Solar Cycles (SC 22-24). The origins of storm morphology are discussed using ionosonde measurements and GNSS observations.

Keywords

Ionospheric storm Geomagnetic storms Positive phase Negative phase Superstorm 

References and Further Reading

  1. Anderson CN (1928) Correlation of long wave transatlantic radio transmission with other factors affected by solar activity. Proc Inst Radio Eng NY 16:297–347Google Scholar
  2. Astafyeva E, Zakharenkova I, Forster M (2015) Ionospheric response to the 2015 St. Patrick’s Day storm: a global multi-instrumental overview. J Geophys Res 20:9023–9037. http://doi.org/10.1002/2015ja021629CrossRefGoogle Scholar
  3. Bhattarai N, Chapagain NP, Binod Adhikari B (2016) Total electron content and electron density profile observations during geomagnetic storms using COSMIC satellite data. Discovery 52(250):1979–1990Google Scholar
  4. Blagoveshchensky DV, Maltseva OA, Sergeeva MA (2018) Impact of magnetic storms on the global TEC distribution. Ann Geophys. http://doi.org/10.5194/angeo-2018-4CrossRefGoogle Scholar
  5. Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85:1669–1686CrossRefGoogle Scholar
  6. Buonsanto MJ (1999) Ionospheric storm—a review. Space Sci Rev 88:563–601.  https://doi.org/10.1023/a:1005107532631CrossRefGoogle Scholar
  7. Buresova D, Laštovička J (2008) Pre-storm electron density enhancements at middle latitudes. J Atmos Solar-Terr Phys 70:1848–1855CrossRefGoogle Scholar
  8. Cander LR (2016) Re-visit of ionosphere storm morphology with TEC data in the current solar cycle. J Atmos Sol Terr Phys 138–139:187–205Google Scholar
  9. Daglis I A (1997) The role of magnetosphere-ionosphere coupling in magnetic storm dynamics. In: Tsurutani BT et al (eds) Magnetic storms, AGU Geophysical Monograph Series 98:107–116 Washington DCGoogle Scholar
  10. Danilov AD, Morozova LD (1985) Ionospheric storms in the F2 region, morphology and physics (Review). Geomag Aeron 25:593–605Google Scholar
  11. Duncan RA (1969) F-region seasonal and magnetic-storm behavior. J Atmos Terr Phys 31:59–70CrossRefGoogle Scholar
  12. Kamide Y (2006) What is an “Intense geomagnetic storm”? Space Weather.  https://doi.org/10.1029/2006sw000248CrossRefGoogle Scholar
  13. Liu W, Xu L, Xiong C et al (2017) The ionospheric storms in the American sector and their longitudinal dependence at the northern middle latitudes. Adv Space Res 59:603–613.  https://doi.org/10.1016/j.asr.2016.10.032CrossRefGoogle Scholar
  14. Liu X, Yue J, Wang W et al (2018) Responses of lower thermospheric temperature to the 2013 St. Patrick’s Day geomagnetic storm. Geophys Res Lett 45(10).  https://doi.org/10.1029/2018gl078039CrossRefGoogle Scholar
  15. Matsushita S (1959) A study of the morphology of ionospheric storms. J Geophys Res 64:305–321CrossRefGoogle Scholar
  16. Matuura N (1972) Theoretical models of ionospheric storms. Space Sci Rev 13:124–189CrossRefGoogle Scholar
  17. Mendillo M (2006) Storms in the ionosphere: patterns and processes for total electron content. Rev Geophys. http://doi.org/10.1029/2005RG000193CrossRefGoogle Scholar
  18. Mendillo M, Klobuchar JA (1974) An atlas of the midlatitude F-region response to geomagnetic storms. AFCRL Technical Report # 0065, LG Hanscom AFB, Bedford MAGoogle Scholar
  19. Obayashi T (1964) Morphology of storms in the ionosphere. Rev Geophys 1:335–366Google Scholar
  20. Panda SK, Gedam SS, Rajaram G et al (2014) A multi-technique study of the 29–31 October 2003 geomagnetic storm effect on low latitude ionosphere over Indian region with magnetometer, ionosonde, and GPS observations. Astrophys Space Sci 354:267–274. http://doi.org/10.1007/s10509-014-2092-7CrossRefGoogle Scholar
  21. Prӧlss GW (1995) Ionospheric F-region storms. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol 2. CRCPress Boca Raton, pp 195–248Google Scholar
  22. Prölss GW (2006) Ionospheric F-region storms: unsolved problems. In: Characterising the ionosphere, meeting proceedings RTO-MP-IST-056 10:10-1–10-20 Neuilly-sur-SeineGoogle Scholar
  23. Rajesh PK, Liu JY, Balan N et al (2016) Morphology of midlatitude electron density enhancement using total electron content measurements. J Geophys Res 1503–1507.  https://doi.org/10.1002/2015ja022251Google Scholar
  24. Rees D (1995) Observations and modelling of ionospheric and thermospheric disturbances during major geomagnetic storms: a review. J Atmos Terr Phys 57:1433–1457CrossRefGoogle Scholar
  25. Rishbeth H (1998) How the thermospheric circulation affects the ionospheric F2-layer. J Atmos Sol Terr Phys 60:1385–1402CrossRefGoogle Scholar
  26. Sojka JJ, Schunk RW, Denig WF (1994) Ionospheric response to the sustained high geomagnetic activity during the March’89 great storm. J Geophys Res 99:21, 341–21, 352Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.RAL Space, Science and Technology Facilities Council (STFC)Rutherford Appleton Laboratory (RAL)DidcotUK

Personalised recommendations