Advertisement

Solar-Terrestrial Interactions

  • Ljiljana R. Cander
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

The science underpinning the study of space weather is discussed, starting from dynamic processes on the Sun, in the interplanetary medium, and in the Earth’s magnetosphere, ionosphere, and atmosphere. The focus is on the dominant features of the plasma medium under normal and extreme solar-terrestrial conditions during the last few Solar Cycles.

Keywords

Space Plasma Solar Flares Solar Proton Events Coronal Mass Ejections Geomagnetic Storms Space Missions 

References and Further Reading

  1. Akasofu S-I (2017) The electric current approach in the solar–terrestrial relationship. Ann Geophys 35:965–978.  https://doi.org/10.5194/angeo-35-965-2017CrossRefGoogle Scholar
  2. Bartels J (1949) The standardized index, ks, and the planetary index kp. IATME Bull 97(12b)Google Scholar
  3. Cowley SWH, Lockwood M (1992) Excitation and decay of solar wind-driven flows in the magnetosphere-ionosphere system. Ann Geophys 10:103–115Google Scholar
  4. Cowley SWH, Lockwood M (1996) Time-dependent flows in the coupled solar wind magnetosphere-ionosphere system. Adv Space Res 18:141–150.  https://doi.org/10.1016/02731177(95)00972-8CrossRefGoogle Scholar
  5. Daglis IA, Thorne RM, Baumjohann W et al (1999) The terrestrial ring current: Origin, formation, and decay. Rev of Geophys 37(4):407–438CrossRefGoogle Scholar
  6. Echer E, Gonzalez WD, Tsurutani BT et al (2008) Interplanetary conditions causing intense geomagnetic storms (Dst < − 100 nT) during solar cycle 23 (1996–2006). J Geophys Res 113:A05221.  https://doi.org/10.1029/2007ja012744CrossRefGoogle Scholar
  7. Guhathakurta M (2003) NASA’s Sun-Earth Connection Program & ILWS. Office of Space Science, CodeSS, NASAGoogle Scholar
  8. Joselyn JA (1986) SESC methods for short-term geomagnetic predictions. In: Proceedings of the 1984 solar-terrestrial prediction workshop, NOAA, BoulderGoogle Scholar
  9. Joselyn JA (1995) Geomagnetic activity forecasting: the state of the art. Rev Geophys 33:383–401CrossRefGoogle Scholar
  10. Kamide Y (2006) What is an “Intense Geomagnetic Storm”? Space Weather 4:S06008.  https://doi.org/10.1029/2006sw000248CrossRefGoogle Scholar
  11. Lakhina GS, Tsurutani BT (2016) Geomagnetic storms: historical perspective to modern view. Geosci Lett.  https://doi.org/10.1186/s40562-016-0037-4CrossRefGoogle Scholar
  12. Lara A, Gopalswamy N, Xie H et al (2006) Are halo coronal mass ejections special events? J Geophys Res 111:A06107.  https://doi.org/10.1029/2005ja011431CrossRefGoogle Scholar
  13. Love JJ, Gannon JL (2009) Revised Dst and the epicycles of magnetic disturbance: 1958–2007. Ann Geophys 27:3101–3131CrossRefGoogle Scholar
  14. Luhmann JG (1997) CMEs and space weather. AGU Geophysical Monograph 99:291–299Google Scholar
  15. Ness NF, Scearce CS, Seek JB (1964) Initial results of the IMP-1 magnetic field experiment. J Geophys Res 69(17):3531–3569CrossRefGoogle Scholar
  16. Sugiura M (1964) Hourly values of equatorial Dst for the IGY. Ann Int Geophys Year 35:9–45Google Scholar
  17. Tsurutani BT, Gonzalez WD, Tang F et al (1992) Great magnetic storms. Geophys Res Lett 19:73–76CrossRefGoogle Scholar
  18. Zhang J, Dere KP, Howard RA et al (2003) Identification of solar sources of major geomagnetic storms between 1996 and 2000. Astrophys J 582:520–533CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.RAL Space, Science and Technology Facilities Council (STFC)Rutherford Appleton Laboratory (RAL)DidcotUK

Personalised recommendations