Advertisement

Using Stem Cell-Derived Microvesicles in Regenerative Medicine: A New Paradigm for Cell-Based-Cell-Free Therapy

  • Mohammad Amin Rezvanfar
  • Mohammad Abdollahi
  • Fakher Rahim
Chapter
Part of the Stem Cells in Clinical Applications book series (SCCA)

Abstract

The current advances in the field of stem cell-based therapies have paved the way for these novel treatments to enter clinical trials. Among them, mesenchymal stem cell (MSC) based therapies have offered an important potential modality of regenerative medicine and immunotherapy. MSCs are multipotent/pluripotent fibroblast-like cells that exist in almost all tissues and have the potential to differentiate into various cell types from all three germ layers (i.e., ectoderm, mesoderm, and endoderm). The regenerative ability of MSCs might be attributed to their paracrine actions on neighboring host cells rather than a trans-differentiation into the tissue specific cells. These paracrine factors are contained in endosomal derived extracellular microvesicles (EVs), which are released at the site of injury, where they secrete large quantities of bioactive factors like proteins, mRNAs, and miRNAs with anti-inflammatory, antioxidant, trophic, antiapoptotic, and angiogenic effects. Recent findings, however, have demonstrated remarkable therapeutic effects and regenerative potential of MSC-derived EVs showing that conditioned media from stem cell cultures can produce similar efficacious effects compared to those observed for cells. In line with these findings, in a series of experiments our research teams have demonstrated that MSC-derived EVs served as trophic shuttles for enhancing sperm quality parameters and reducing complications of multiple sclerosis. As a bilipid membrane vesicle with many membrane-bound proteins and a diverse cargo, exosomes represents an ideal therapeutic agent that have the potential to home and target tissues and treat complicated diseases such as cardiovascular injuries, chemotherapy side effects, infertility, and MS. In this chapter, the latest evidence on the beneficial effects of the stem cell-derived EVs is explored to support the development of clinical grade bioproducts as new GMP-based cell-free regenerative medicines in tissue regeneration.

Keywords

Stem cells Extracellular microvesicles (Evs) Exosomes Disease Cell-free biomedicine 

References

  1. Ardeshiry Lajimi A, Hagh MF, Saki N, Mortaz E, Soleimani M, Rahim F (2013) Feasibility of cell therapy in multiple sclerosis: a systematic review of 83 studies. Int J Hematol Oncol Stem Cell Res 7(1):15–33PubMedPubMedCentralGoogle Scholar
  2. Aurora AB, Olson EN (2014) Immune modulation of stem cells and regeneration. Cell Stem Cell 15(1):14–25CrossRefGoogle Scholar
  3. Ballios BG, van der Kooy D (2010) Biology and therapeutic potential of adult retinal stem cells. Can J Ophthalmol 45(4):342–351CrossRefGoogle Scholar
  4. Barkho BZ, Zhao X (2011) Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther 6(4):327–338CrossRefGoogle Scholar
  5. Baulch JE, Acharya MM, Allen BD, Ru N, Chmielewski NN, Martirosian V, Giedzinski E, Syage A, Park AL, Benke SN et al (2016) Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain. Proc Natl Acad Sci U S A 113(17):4836–4841CrossRefGoogle Scholar
  6. Bi XY, Huang S, Chen JL, Wang F, Wang Y, Guo ZK (2014) [Exploration of conditions for releasing microvesicle from human bone marrow mesenchymal stem cells]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 22(2):491–495Google Scholar
  7. Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27(8):3037–3042CrossRefGoogle Scholar
  8. Bobis-Wozowicz S, Kmiotek K, Sekula M, Kedracka-Krok S, Kamycka E, Adamiak M, Jankowska U, Madetko-Talowska A, Sarna M, Bik-Multanowski M et al (2015) Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells (Dayton, Ohio) 33(9):2748–2761CrossRefGoogle Scholar
  9. Broxmeyer HE (2011) Insights into the biology of cord blood stem/progenitor cells. Cell Prolif 44(Suppl 1):55–59CrossRefGoogle Scholar
  10. Bruno S, Camussi G (2013) Role of mesenchymal stem cell-derived microvesicles in tissue repair. Pediatr Nephrol (Berlin, Germany) 28(12):2249–2254CrossRefGoogle Scholar
  11. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067CrossRefGoogle Scholar
  12. Cabrera CM, Cobo F, Nieto A, Concha A (2006) Strategies for preventing immunologic rejection of transplanted human embryonic stem cells. Cytotherapy 8(5):517–518CrossRefGoogle Scholar
  13. Camussi G, Deregibus MC, Cantaluppi V (2013) Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem Soc Trans 41(1):283–287CrossRefGoogle Scholar
  14. Chen JY, An R, Liu ZJ, Wang JJ, Chen SZ, Hong MM, Liu JH, Xiao MY, Chen YF (2014) Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacol Sin 35(9):1121–1128CrossRefGoogle Scholar
  15. Choumerianou DM, Dimitriou H, Kalmanti M (2008) Stem cells: promises versus limitations. Tissue Eng Part B Rev 14(1):53–60CrossRefGoogle Scholar
  16. Dorronsoro A, Robbins PD (2013) Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 4(2):39CrossRefGoogle Scholar
  17. Drommelschmidt K, Serdar M, Bendix I, Herz J, Bertling F, Prager S, Keller M, Ludwig AK, Duhan V, Radtke S et al (2017) Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun 60:220–232CrossRefGoogle Scholar
  18. Ebrahimi A, Rahim F (2014) Recent immunomodulatory strategies in transplantation. Immunol Investig 43(8):829–837CrossRefGoogle Scholar
  19. Ebrahimi A, Hosseini SA, Rahim F (2014) Immunosuppressive therapy in allograft transplantation: from novel insights and strategies to tolerance and challenges. Cent Eur J Immunol 39(3):400–409CrossRefGoogle Scholar
  20. Farber DB, Katsman D (2016) Embryonic stem cell-derived microvesicles: could they be used for retinal regeneration? Adv Exp Med Biol 854:563–569CrossRefGoogle Scholar
  21. Farsad K (2002) Exosomes: novel organelles implicated in immunomodulation and apoptosis. Yale J Biol Med 75(2):95–101PubMedPubMedCentralGoogle Scholar
  22. Favaro E, Carpanetto A, Lamorte S, Fusco A, Caorsi C, Deregibus MC, Bruno S, Amoroso A, Giovarelli M, Porta M et al (2014) Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia 57(8):1664–1673CrossRefGoogle Scholar
  23. Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, Cisterna B, Bruno S, Romagnoli R, Salizzoni M, Tetta C et al (2012) Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells (Dayton, Ohio) 30(9):1985–1998CrossRefGoogle Scholar
  24. Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D, Calogero R, Bussolati B, Tetta C, Camussi G (2010) Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 14(6b):1605–1618CrossRefGoogle Scholar
  25. Jaimes Y, Naaldijk Y, Wenk K, Leovsky C, Emmrich F (2017) Mesenchymal stem cell-derived microvesicles modulate lipopolysaccharides-induced inflammatory responses to microglia cells. Int J Cancer 35(3):812–823Google Scholar
  26. Ji Y, Ma Y, Chen X, Ji X, Gao J, Zhang L, Ye K, Qiao F, Dai Y, Wang H et al (2017) Microvesicles released from human embryonic stem cell derived-mesenchymal stem cells inhibit proliferation of leukemia cells. Oncol Rep 38(2):1013–1020CrossRefGoogle Scholar
  27. Kang HS, Choi SH, Kim BS, Choi JY, Park G-B, Kwon TG, Chun SY (2015) Advanced properties of urine derived stem cells compared to adipose tissue derived stem cells in terms of cell proliferation, immune modulation and multi differentiation. J Korean Med Sci 30(12):1764–1776CrossRefGoogle Scholar
  28. Karlsson T, Lundholm M, Widmark A, Persson E (2016) Tumor cell-derived exosomes from the prostate cancer cell line TRAMP-C1 impair osteoclast formation and differentiation. PLoS One 11(11):e0166284CrossRefGoogle Scholar
  29. Katsman D, Stackpole EJ, Domin DR, Farber DB (2012) Embryonic stem cell-derived microvesicles induce gene expression changes in Muller cells of the retina. PLoS One 7(11):e50417CrossRefGoogle Scholar
  30. Kugler J, Huhse B, Tralau T, Luch A (2017) Embryonic stem cells and the next generation of developmental toxicity testing. Expert Opin Drug Metab Toxicol 13(8):833–841CrossRefGoogle Scholar
  31. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222CrossRefGoogle Scholar
  32. Li X, Liu L, Chai J (2015) [Progress of mesenchymal stem cell-derived exosomes in tissue repair]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 29(2):234–238Google Scholar
  33. Li J, Luo H, Dong X, Liu Q, Wu C, Zhang T, Hu X, Zhang Y, Song B, Li L (2017) Therapeutic effect of urine-derived stem cells for protamine/lipopolysaccharide-induced interstitial cystitis in a rat model. Stem Cell Res Ther 8(1):107CrossRefGoogle Scholar
  34. Lin SS, Zhu B, Guo ZK, Huang GZ (2014a) [Protective effect of bone marrow mesenchymal stem cell-derived microvesicles on glutamate injured PC12 cells]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 22(4):1078–1083Google Scholar
  35. Lin SS, Zhu B, Guo ZK, Huang GZ, Wang Z, Chen J, Wei XJ, Li Q (2014b) Bone marrow mesenchymal stem cell-derived microvesicles protect rat pheochromocytoma PC12 cells from glutamate-induced injury via a PI3K/Akt dependent pathway. Neurochem Res 39(5):922–931CrossRefGoogle Scholar
  36. Liu J, Kuwabara A, Kamio Y, Hu S, Park J, Hashimoto T, Lee JW (2016) Human mesenchymal stem cell-derived microvesicles prevent the rupture of intracranial aneurysm in part by suppression of mast cell activation via a PGE2-dependent mechanism. Stem Cells (Dayton, Ohio) 34(12):2943–2955CrossRefGoogle Scholar
  37. Lopez-Verrilli MA, Caviedes A, Cabrera A, Sandoval S, Wyneken U, Khoury M (2016) Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience 320:129–139CrossRefGoogle Scholar
  38. Lunn JS, Sakowski SA, Hur J, Feldman EL (2011) Stem cell technology for neurodegenerative diseases. Ann Neurol 70(3):353–361CrossRefGoogle Scholar
  39. Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K (2012) Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 147(1–2):47–54CrossRefGoogle Scholar
  40. Mokarizadeh A, Rezvanfar MA, Dorostkar K, Abdollahi M (2013) Mesenchymal stem cell derived microvesicles: trophic shuttles for enhancement of sperm quality parameters. Reprod Toxicol (Elmsford, NY) 42:78–84CrossRefGoogle Scholar
  41. Monsel A, Zhu YG, Gennai S, Hao Q, Hu S, Rouby JJ, Rosenzwajg M, Matthay MA, Lee JW (2015) Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med 192(3):324–336CrossRefGoogle Scholar
  42. Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW (2016) Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 16(7):859–871CrossRefGoogle Scholar
  43. Moore C, Kosgodage U, Lange S, Inal JM (2017) The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy. Int J Cancer 141(3):428–436CrossRefGoogle Scholar
  44. Muraro PA, Martin R, Mancardi GL, Nicholas R, Sormani MP, Saccardi R (2017) Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol 13(7):391–405CrossRefGoogle Scholar
  45. Nargesi AA, Lerman LO, Eirin A (2017) Mesenchymal stem cell-derived extracellular vesicles for renal repair. Curr Gene Ther 17(1):29–42CrossRefGoogle Scholar
  46. Outka G (2009) The ethics of embryonic stem cell research and the principle of “nothing is lost”. Yale J Health Policy Law Ethics 9(Suppl):585–602PubMedGoogle Scholar
  47. Penna V, Lipay MV, Duailibi MT, Duailibi SE (2015) The likely role of proteolytic enzymes in unwanted differentiation of stem cells in culture. Future Sci OA 1(3):Fso28CrossRefGoogle Scholar
  48. Podbielska M, Banik NL, Kurowska E, Hogan EL (2013) Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci 3(3):1282–1324CrossRefGoogle Scholar
  49. Rahim F, Allahmoradi H, Salari F, Shahjahani M, Fard AD, Hosseini SA, Mousakhani H (2013) Evaluation of signaling pathways involved in gamma-globin gene induction using fetal hemoglobin inducer drugs. Int J Hematol Oncol Stem Cell Res 7(3):41–46PubMedPubMedCentralGoogle Scholar
  50. Raisi A, Azizi S, Delirezh N, Heshmatian B, Farshid AA, Amini K (2014) The mesenchymal stem cell-derived microvesicles enhance sciatic nerve regeneration in rat: a novel approach in peripheral nerve cell therapy. J Trauma Acute Care Surg 76(4):991–997CrossRefGoogle Scholar
  51. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20(5):847–856CrossRefGoogle Scholar
  52. Razmkhah F, Soleimani M, Mehrabani D, Karimi MH, Kafi-Abad SA (2015) Leukemia cell microvesicles promote survival in umbilical cord blood hematopoietic stem cells. EXCLI J 14:423–429PubMedPubMedCentralGoogle Scholar
  53. Razmkhah F, Soleimani M, Mehrabani D, Karimi MH, Amini Kafi-Abad S, Ramzi M, Iravani Saadi M, Kakoui J (2017) Leukemia microvesicles affect healthy hematopoietic stem cells. Tumour Biol 39(2):1010428317692234CrossRefGoogle Scholar
  54. Riazifar M, Pone EJ, Lotvall J, Zhao W (2017) Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol 57:125–154CrossRefGoogle Scholar
  55. Saki N, Jalalifar MA, Soleimani M, Hajizamani S, Rahim F (2013) Adverse effect of high glucose concentration on stem cell therapy. Int J Hematol Oncol Stem Cell Res 7(3):34–40PubMedPubMedCentralGoogle Scholar
  56. Sargent A, Bai L, Shano G, Karl M, Garrison E, Ranasinghe L, Planchon SM, Cohen J, Miller RH (2017) CNS disease diminishes the therapeutic functionality of bone marrow mesenchymal stem cells. Exp Neurol 295:222–232CrossRefGoogle Scholar
  57. Shahrabi S, Azizidoost S, Shahjahani M, Rahim F, Ahmadzadeh A, Saki N (2014) New insights in cellular and molecular aspects of BM niche in chronic myelogenous leukemia. Tumour Biol 35(11):10627–10633CrossRefGoogle Scholar
  58. Sideri A, Neokleous N, Brunet De La Grange P, Guerton B, Le Bousse Kerdilles MC, Uzan G, Peste-Tsilimidos C, Gluckman E (2011) An overview of the progress on double umbilical cord blood transplantation. Haematologica 96(8):1213–1220CrossRefGoogle Scholar
  59. Tian S, Liu Q, Gnatovskiy L, Ma PX, Wang Z (2015) Heart regeneration with embryonic cardiac progenitor cells and cardiac tissue engineering. J Stem Cell Transplant Biol 1(1):104PubMedPubMedCentralGoogle Scholar
  60. Tweedell KS (2017) The adaptability of somatic stem cells: a review. J Stem Cells Regen Med 13(1):3–13PubMedPubMedCentralGoogle Scholar
  61. Wang Y, Fu B, Sun X, Li D, Huang Q, Zhao W, Chen X (2015) Differentially expressed microRNAs in bone marrow mesenchymal stem cell-derived microvesicles in young and older rats and their effect on tumor growth factor-beta1-mediated epithelial-mesenchymal transition in HK2 cells. Stem Cell Res Ther 6:185CrossRefGoogle Scholar
  62. Wankhade UD, Shen M, Kolhe R, Fulzele S (2016) Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int 2016:3206807CrossRefGoogle Scholar
  63. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, Deng Y, Goldberg L, Aliotta J, Chatterjee D et al (2016) Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia 30(11):2221–2231CrossRefGoogle Scholar
  64. Xie H, Wang Z, Zhang L, Lei Q, Zhao A, Wang H, Li Q, Chen Z, Zhang W (2016a) Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications. PeerJ 4:e2040CrossRefGoogle Scholar
  65. Xie H, Sun L, Zhang L, Liu T, Chen L, Zhao A, Lei Q, Gao F, Zou P, Li Q et al (2016b) Mesenchymal stem cell-derived microvesicles support ex vivo expansion of cord blood-derived CD34(+) Cells. Stem Cells Int 2016:6493241PubMedPubMedCentralGoogle Scholar
  66. Xie L, Mao M, Zhou L, Jiang B (2016c) Spheroid mesenchymal stem cells and mesenchymal stem cell-derived microvesicles: two potential therapeutic strategies. Stem Cells Dev 25(3):203–213CrossRefGoogle Scholar
  67. Yang B, Qiu Y, Zhou N, Ouyang H, Ding J, Cheng B, Sun J (2017) Application of stem cells in oral disease therapy: progresses and perspectives. Front Physiol 8:197PubMedPubMedCentralGoogle Scholar
  68. Yin H, Jiang H (2015) [Application prospect of stem cell-derived microvesicles in regeneration of injured tissues]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 32(3):688–692Google Scholar
  69. Yin G, Hu G, Wan R, Yu G, Cang X, Xiong J, Ni J, Hu Y, Xing M, Fan Y et al (2016) Role of microvesicles from bone marrow mesenchymal stem cells in acute pancreatitis. Pancreas 45(9):1282–1293CrossRefGoogle Scholar
  70. Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157CrossRefGoogle Scholar
  71. Zhu X, You Y, Li Q, Zeng C, Fu F, Guo A, Zhang H, Zou P, Zhong Z, Wang H et al (2014) BCR-ABL1-positive microvesicles transform normal hematopoietic transplants through genomic instability: implications for donor cell leukemia. Leukemia 28(8):1666–1675CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mohammad Amin Rezvanfar
    • 1
  • Mohammad Abdollahi
    • 1
    • 2
  • Fakher Rahim
    • 3
  1. 1.Department of Toxicology and Diseases, Pharmaceutical Sciences Research Center (PSRC)Tehran University of Medical Sciences (TUMS)TehranIran
  2. 2.Department of Toxicology and Pharmacology, Faculty of PharmacyTehran University of Medical Sciences (TUMS)TehranIran
  3. 3.Health Research Institute, Research Center of Thalassemia and HemoglobinopathiesAhvaz Jundishapur University of Medical SciencesAhvazIran

Personalised recommendations