Advertisement

Approximate Multi-Accelerator Tiled Architecture for Energy-Efficient Motion Estimation

  • Bharath Srinivas Prabakaran
  • Walaa El-Harouni
  • Semeen Rehman
  • Muhammad Shafique
Chapter

Abstract

Video processing applications are inherently error resilient. This resilience comes from the fact that: (1) inputs obtained are noisy and highly correlated in the spatial and temporal domains, (2) probabilistic computational algorithms in HEVC are inherently noise tolerant with error masking capabilities, and finally, (3) the visual perception of the final user is limited by various psychological and environmental factors. Considering these features, we analyze the complex multimode motion-estimation module in the latest High Efficiency Video Coding (HEVC) for employing heterogeneous approximations. This chapter presents a short overview of the HEVC motion estimator with an in-depth analysis of its computational complexity and energy consumption, followed by a full-system approximate architecture for the energy-efficient motion-estimation coprocessor.

References

  1. 1.
  2. 2.
    El-Harouni W, Rehman S, Prabakaran BS, Kumar A, Hafiz R, Shafique M (2017) Embracing approximate computing for energy-efficient motion estimation in high efficiency video coding. In: Proceedings of the conference on design, automation & test in EuropeGoogle Scholar
  3. 3.
    Grellert M, Shafique M, Khan MUK, Agostini L, Mattos JCB, Henkel J (2013) An adaptive workload management scheme for HEVC encoding. In: 20th IEEE international conference on image processing (ICIP)Google Scholar
  4. 4.
    Gupta V, Mohapatra D, Raghunathan A, Roy K (2013) Low-power digital signal processing using approximate adders. IEEE Trans Comput Aid Des Integr Circuits Syst 32:124–137CrossRefGoogle Scholar
  5. 5.
    Javaid H, Shafique M, Henkel J, Parameswaran S (2011) System-level application-aware dynamic power management in adaptive pipelined MPSoCS for multimedia. In: Proceedings of the international conference on computer-aided design. IEEE, PiscatawayGoogle Scholar
  6. 6.
    Khan MUK, Shafique M, Grellert M, Henkel J (2013) Hardware-software collaborative complexity reduction scheme for the emerging HEVC intra encoder. In: Proceedings of the conference on design, automation and test in EuropeGoogle Scholar
  7. 7.
    Khan MUK, Shafique M, Henkel J (2013) Amber: Adaptive energy management for on-chip hybrid video memories. In: Proceedings of the international conference on computer-aided design. IEEE, PiscatawayGoogle Scholar
  8. 8.
    Khan MUK, Shafique M, Henkel J (2014) Software architecture of high efficiency video coding for many-core systems with power-efficient workload balancing. In: Proceedings of the conference on design, automation & test in EuropeGoogle Scholar
  9. 9.
    Mohapatra D, Karakonstantis G, Roy K (2009) Significance driven computation: a voltage-scalable, variation-aware, quality-tuning motion estimator. In: Proceedings of the 2009 ACM/IEEE international symposium on Low power electronics and design. ACM, New YorkGoogle Scholar
  10. 10.
    Nepal K, Hashemi S, Tann H, Bahar RI, Reda S (2016) Automated high-level generation of low-power approximate computing circuits. IEEE Trans Emerg Topics Comput 4Google Scholar
  11. 11.
    Rehman S, El-Harouni W, Shafique M, Kumar A, Henkel J (2016) Architectural-space exploration of approximate multipliers. In: IEEE/ACM International conference on computer-aided design (ICCAD)Google Scholar
  12. 12.
    Sampaio F, Shafique M, Zatt B, Bampi S, Henkel J (2014) DSVM: energy-efficient distributed scratchpad video memory architecture for the next-generation high efficiency video coding. In: Design, automation and test in Europe conference and exhibition (DATE). IEEE, PiscatawayGoogle Scholar
  13. 13.
    Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H. 264/AVC standard. IEEE Trans Circuits Syst Video Technol 17(9):1103–1120CrossRefGoogle Scholar
  14. 14.
    Shafique M, Bauer L, Henkel J (2010) enBudget: a run-time adaptive predictive energy-budgeting scheme for energy-aware motion estimation in H. 264/MPEG-4 AVC video encoder. In: Design, automation & test in Europe conference & exhibition (DATE), 2010. IEEE, PiscatawayGoogle Scholar
  15. 15.
    Shafique M, Molkenthin B, Henkel J (2010) An HVS-based adaptive computational complexity reduction scheme for H. 264/AVC video encoder using prognostic early mode exclusion. In: Proceedings of the conference on design, automation and test in EuropeGoogle Scholar
  16. 16.
    Sullivan GJ, Ohm JR, Han WJ, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668CrossRefGoogle Scholar
  17. 17.
    Varatkar GV, Shanbhag NR (2006) Energy-efficient motion estimation using error-tolerance. In: Proceedings of the 2006 international symposium on low power electronics and design ISLPED’06. IEEE, PiscatawayGoogle Scholar
  18. 18.
    Zatt B, Shafique M, Sampaio F, Agostini L, Bampi S, Henkel J (2011) Run-time adaptive energy-aware motion and disparity estimation in multiview video coding. In Proceedings of the 48th design automation conference. ACM, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bharath Srinivas Prabakaran
    • 1
  • Walaa El-Harouni
    • 2
  • Semeen Rehman
    • 1
  • Muhammad Shafique
    • 1
  1. 1.Vienna University of Technology (TU Wien)ViennaAustria
  2. 2.ViennaAustria

Personalised recommendations