Physiological and Pathological Vascular Aging

  • Patrícia R. Pitrez
  • Helena R. Aires
  • Inês Tomé
  • Rita Sá Ferreira
  • Lino FerreiraEmail author
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Aging is a risk factor for cardiovascular diseases. Through aging, blood vessels become stiffer, less elastic, and, thus, with less ability to contract. The objectives of this chapter are to review (1) recent progresses in the characterization of physiological and pathological vascular aging and (2) in vitro platforms to study vascular aging. Initially, we will discuss the causes and biomarkers of vascular aging. Then we will discuss the main characteristics related to physiological and pathological aging including (1) altered ECM remodeling (e.g., composition, mechanical properties, degradation, calcification of the ECM during aging); (2) enhanced fibrosis (e.g., causes and mechanisms); (3) vascular cell dysfunction triggered by chronic oxidative stress, inflammation, or senescence; and (4) altered responses of vascular cells to flow shear stress. Finally, we will discuss in vitro systems to study vascular aging, particularly the effect of biomechanics in aged cells as well as the effect of drugs during vascular aging.


  1. 1.
    Adler, A. S., et al. (2007). Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes & Development, 21(24), 3244–3257.CrossRefGoogle Scholar
  2. 2.
    Aliper, A. M., Csoka, A. B., Buzdin, A., Jetka, T., Roumiantsev, S., Moskalev, A., et al. (2015). Signaling pathway activation drift during aging: Hutchinson-Gilford progeria syndrome fibroblasts are comparable to normal middle-age and old-age cells. Aging-Us, 7(1), 26–37.CrossRefGoogle Scholar
  3. 3.
    Armanios, M., et al. (2009). Short telomeres are sufficient to cause the degenerative defects associated with aging. The American Journal of Human Genetics, 85(6), 823–832.CrossRefGoogle Scholar
  4. 4.
    Atchison, L., et al. (2017). A tissue engineered blood vessel model of Hutchinson-Gilford progeria syndrome using human iPSC-derived smooth muscle cells. Scientific Reports, 7(1), 8168.ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Baker, D. J., et al. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232–236.ADSCrossRefGoogle Scholar
  6. 6.
    Baker, D. J., et al. (2016). Naturally occurring p16(Inks4a)-positive cells shorten healthy lifespan. Nature, 530(7589), 184–189.ADSCrossRefGoogle Scholar
  7. 7.
    Baker, P. B., Baba, N., & Boesel, C. P. (1981). Cardiovascular-abnormalities in progeria - case-report and review of the literature. Archives of Pathology & Laboratory Medicine, 105(7), 384–386.Google Scholar
  8. 8.
    Baratchi, S., et al. (2017). Molecular sensors of blood flow in endothelial cells. Trends in Molecular Medicine, 23(9), 850–868.CrossRefGoogle Scholar
  9. 9.
    Beck Jr., L., & D'Amore, P. A. (1997). Vascular development: cellular and molecular regulation. The FASEB Journal, 11(5), 365–373.CrossRefGoogle Scholar
  10. 10.
    Bergo, M. O., et al. (2002). Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13049–13054.ADSCrossRefGoogle Scholar
  11. 11.
    Berry, C. L., Sosa-Melgarejo, J. A., & Greenwald, S. E. (1993). The relationship between wall tension, lamellar thickness, and intercellular junctions in the fetal and adult aorta: Its relevance to the pathology of dissecting aneurysm. The Journal of Pathology, 169(1), 15–20.CrossRefGoogle Scholar
  12. 12.
    Bhatia, S. N., & Ingber, D. E. (2014). Microfluidic organs-on-chips. Nature Biotechnology, 32(8), 760–772.CrossRefGoogle Scholar
  13. 13.
    Bonello-Palot, N., et al. (2014). Prelamin A accumulation in endothelial cells induces premature senescence and functional impairment. Atherosclerosis, 237(1), 45–52.CrossRefGoogle Scholar
  14. 14.
    Bonnema, D. D., et al. (2007). Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). Journal of Cardiac Failure, 13(7), 530–540.CrossRefGoogle Scholar
  15. 15.
    Bostrom, K. I., Rajamannan, N. M., & Towler, D. A. (2011). The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circulation Research, 109(5), 564–577.CrossRefGoogle Scholar
  16. 16.
    Brassard, J. A., et al. (2016). Hutchinson-Gilford progeria syndrome as a model for vascular aging. Biogerontology, 17(1), 129–145.CrossRefGoogle Scholar
  17. 17.
    Briones, A. M., et al. (2005). Ageing affects nitric oxide synthase, cyclooxygenase and oxidative stress enzymes expression differently in mesenteric resistance arteries. Autonomic & Autacoid Pharmacology, 25(4), 155–162.CrossRefGoogle Scholar
  18. 18.
    Brooke, B. S., Bayes-Genis, A., & Li, D. Y. (2003). New insights into elastin and vascular disease. Trends in Cardiovascular Medicine, 13(5), 176–181.CrossRefGoogle Scholar
  19. 19.
    Burton, A. C. (1954). Relation of structure to function of the tissues of the wall of blood vessels. Physiological Reviews, 34(4), 619–642.CrossRefGoogle Scholar
  20. 20.
    Burton, D. G., & Krizhanovsky, V. (2014). Physiological and pathological consequences of cellular senescence. Cellular and Molecular Life Sciences, 71(22), 4373–4386.CrossRefGoogle Scholar
  21. 21.
    Byon, C. H., et al. (2011). Runx2-upregulated receptor activator of nuclear factor kappaB ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(6), 1387–1396.CrossRefGoogle Scholar
  22. 22.
    Campisi, J. (2013). Aging, cellular senescence, and cancer. Annual Review of Physiology, 75(1), 685–705.CrossRefGoogle Scholar
  23. 23.
    Capell, B. C., Collins, F. S., & Nabel, E. G. (2007). Mechanisms of cardiovascular disease in accelerated aging syndromes. Circulation Research, 101(1), 13–26.CrossRefGoogle Scholar
  24. 24.
    Carallo, C., et al. (2016). Carotid endothelial shear stress reduction with aging is associated with plaque development in twelve years. Atherosclerosis, 251, 63–69.CrossRefGoogle Scholar
  25. 25.
    Chau, L., Doran, M., & Cooper-White, J. (2009). A novel multishear microdevice for studying cell mechanics. Lab on a Chip, 9(13), 1897–1902.CrossRefGoogle Scholar
  26. 26.
    Chennupati, R., et al. (2013). Endothelium-dependent hyperpolarization-related relaxations diminish with age in murine saphenous arteries of both sexes. British Journal of Pharmacology, 169(7), 1486–1499.CrossRefGoogle Scholar
  27. 27.
    Costantino, S., Paneni, F., & Cosentino, F. (2016). Ageing, metabolism and cardiovascular disease. The Journal of Physiology, 594(8), 2061–2073.CrossRefGoogle Scholar
  28. 28.
    Csoka, A. B., et al. (2004). Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell, 3(4), 235–243.CrossRefGoogle Scholar
  29. 29.
    Cuhlmann, S., et al. (2011). Disturbed blood flow induces RelA expression via c-Jun N-terminal kinase 1 a novel mode of NF-kappa B regulation that promotes arterial inflammation. Circulation Research, 108(8), 950–959.CrossRefGoogle Scholar
  30. 30.
    Dahl, K. N., et al. (2006). Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10271–10276.ADSCrossRefGoogle Scholar
  31. 31.
    Davis, E. C. (1993). Endothelial cell connecting filaments anchor endothelial cells to the subjacent elastic lamina in the developing aortic intima of the mouse. Cell and Tissue Research, 272(2), 211–219.CrossRefGoogle Scholar
  32. 32.
    Dimri, G. P., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363–9367.ADSCrossRefGoogle Scholar
  33. 33.
    Duca, L., et al. (2016). Matrix ageing and vascular impacts: Focus on elastin fragmentation. Cardiovascular Research, 110(3), 298–308.CrossRefGoogle Scholar
  34. 34.
    Dudinskaya, E. N., et al. (2015). Short telomere length is associated with arterial aging in patients with type 2 diabetes mellitus. Endocrine Connections, 4(3), 136–143.CrossRefGoogle Scholar
  35. 35.
    El Assar, M., Angulo, J., & Rodriguez-Manas, L. (2013). Oxidative stress and vascular inflammation in aging. Free Radical Biology & Medicine, 65, 380–401.CrossRefGoogle Scholar
  36. 36.
    Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., et al. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423(6937), 293–298.ADSCrossRefGoogle Scholar
  37. 37.
    Esch, E. W., Bahinski, A., & Huh, D. (2015). Organs-on-chips at the frontiers of drug discovery. Nature Reviews. Drug Discovery, 14(4), 248–260.CrossRefGoogle Scholar
  38. 38.
    Fitzgerald, K. A., et al. (2015). Life in 3D is never flat: 3D models to optimise drug delivery. Journal of Controlled Release, 215, 39–54.CrossRefGoogle Scholar
  39. 39.
    Fleenor, B. S., et al. (2010). Arterial stiffening with ageing is associated with transforming growth factor-beta1-related changes in adventitial collagen: Reversal by aerobic exercise. The Journal of Physiology, 588(Pt 20), 3971–3982.CrossRefGoogle Scholar
  40. 40.
    Freund, A., et al. (2012). Lamin B1 loss is a senescence-associated biomarker. Molecular Biology of the Cell, 23(11), 2066–2075.CrossRefGoogle Scholar
  41. 41.
    Fujimoto, D. (1982). Aging and cross-linking in human aorta. Biochemical and Biophysical Research Communications, 109(4), 1264–1269.CrossRefGoogle Scholar
  42. 42.
    Fyhrquist, F., Saijonmaa, O., & Strandberg, T. (2013). The roles of senescence and telomere shortening in cardiovascular disease. Nature Reviews. Cardiology, 10(5), 274–283.CrossRefGoogle Scholar
  43. 43.
    Goldin, A., et al. (2006). Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation, 114(6), 597–605.CrossRefGoogle Scholar
  44. 44.
    Gonzalo, S., Kreienkamp, R., & Askjaer, P. (2017). Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations. Ageing Research Reviews, 33, 18–29.CrossRefGoogle Scholar
  45. 45.
    Guzik, T. J., et al. (2002). Mechanisms of increased vascular superoxide production in human diabetes mellitus: Role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation, 105(14), 1656–1662.CrossRefGoogle Scholar
  46. 46.
    Hadden, W. J., et al. (2017). Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 114(22), 5647–5652.CrossRefGoogle Scholar
  47. 47.
    Hamczyk, M. R., del Campo, L., & Andrés, V. (2017). Aging in the cardiovascular system: Lessons from Hutchinson-Gilford progeria syndrome. Annual Review of Physiology, 80, 27–48.CrossRefGoogle Scholar
  48. 48.
    Hamilton, C. A., et al. (2001). Superoxide excess in hypertension and aging: A common cause of endothelial dysfunction. Hypertension, 37(2 Pt 2), 529–534.CrossRefGoogle Scholar
  49. 49.
    Hampel, B., et al. (2006). Increased expression of extracellular proteins as a hallmark of human endothelial cell in vitro senescence. Experimental Gerontology, 41(5), 474–481.CrossRefGoogle Scholar
  50. 50.
    Harten, I. A., et al. (2011). Age-dependent loss of MMP-3 in Hutchinson-Gilford progeria syndrome. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 66(11), 1201–1207.CrossRefGoogle Scholar
  51. 51.
    Harvey, A., et al. (2016). Vascular fibrosis in aging and hypertension: Molecular mechanisms and clinical implications. The Canadian Journal of Cardiology, 32(5), 659–668.CrossRefGoogle Scholar
  52. 52.
    Hayflick, L. (2000). The illusion of cell immortality. British Journal of Cancer, 83(7), 841–846.CrossRefGoogle Scholar
  53. 53.
    Hernandez, L., et al. (2010). Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Developmental Cell, 19(3), 413–425.CrossRefGoogle Scholar
  54. 54.
    Jacob, M. P. (2003). Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomedicine & Pharmacotherapy, 57(5–6), 195–202.CrossRefGoogle Scholar
  55. 55.
    Jin, K. (2010). Modern biological theories of aging. Aging and Disease, 1(2), 72–74.Google Scholar
  56. 56.
    Kaushik, S., & Cuervo, A. M. (2015). Proteostasis and aging. Nature Medicine, 21(12), 1406–1415.CrossRefGoogle Scholar
  57. 57.
    Kohn, J. C., Lampi, M. C., & Reinhart-King, C. A. (2015). Age-related vascular stiffening: Causes and consequences. Frontiers in Genetics, 6, 112.CrossRefGoogle Scholar
  58. 58.
    Kuro-o, M., et al. (1997). Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature, 390(6655), 45–51.ADSCrossRefGoogle Scholar
  59. 59.
    Laina, A., Stellos, K., & Stamatelopoulos, K. (2017). Vascular ageing: Underlying mechanisms and clinical implications. Experimental Gerontology. Scholar
  60. 60.
    Laurent, S., et al. (2006). Expert consensus document on arterial stiffness: Methodological issues and clinical applications. European Heart Journal, 27(21), 2588–2605.CrossRefGoogle Scholar
  61. 61.
    Lesniewski, L. A., et al. (2011). Aerobic exercise reverses arterial inflammation with aging in mice. American Journal of Physiology. Heart and Circulatory Physiology, 301(3), H1025–H1032.CrossRefGoogle Scholar
  62. 62.
    Li, Y. S., Haga, J. H., & Chien, S. (2005). Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of Biomechanics, 38(10), 1949–1971.CrossRefGoogle Scholar
  63. 63.
    Liu, G. H., et al. (2011). Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature, 472(7342), 221–225.ADSCrossRefGoogle Scholar
  64. 64.
    Liu, Y., Drozdov, I., Shroff, R., Beltran, L. E., & Shanahan, C. M. (2013). Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells. Circulation Research, 112(10), e99–e109.CrossRefGoogle Scholar
  65. 65.
    Lo, C. Y., et al. (2014). An upregulation in the expression of vanilloid transient potential channels 2 enhances hypotonicity-induced cytosolic Ca(2)(+) rise in human induced pluripotent stem cell model of Hutchinson-Gillford Progeria. PLoS One, 9(1), e87273.ADSCrossRefGoogle Scholar
  66. 66.
    London, G. M. (2013). Mechanisms of arterial calcifications and consequences for cardiovascular function. Kidney International Supplements, 3(5), 442–445.CrossRefGoogle Scholar
  67. 67.
    López-Otín, C., et al. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217.CrossRefGoogle Scholar
  68. 68.
    Ly, D. H., et al. (2000). Mitotic misregulation and human aging. Science, 287(5462), 2486–2492.ADSCrossRefGoogle Scholar
  69. 69.
    Malek, A. M., Alper, S. L., & Izumo, S. (1999). Hemodynamic shear stress and its role in atherosclerosis. JAMA, 282(21), 2035–2042.CrossRefGoogle Scholar
  70. 70.
    Malinin, N. L., West, X. Z., & Byzova, T. V. (2011). Oxidation as “the stress of life”. Aging (Albany NY), 3(9), 906–910.CrossRefGoogle Scholar
  71. 71.
    Maslov, A. Y., & Vijg, J. (2009). Genome instability, cancer and aging. Biochimica et Biophysica Acta (BBA) - General Subjects, 1790(10), 963–969.CrossRefGoogle Scholar
  72. 72.
    Massip, L., et al. (2006). Increased insulin, triglycerides, reactive oxygen species, and cardiac fibrosis in mice with a mutation in the helicase domain of the Werner syndrome gene homologue. Experimental Gerontology, 41(2), 157–168.CrossRefGoogle Scholar
  73. 73.
    Matsushita, H., et al. (2001). eNOS activity is reduced in senescent human endothelial cells: Preservation by hTERT immortalization. Circulation Research, 89(9), 793–798.CrossRefGoogle Scholar
  74. 74.
    McClintock, D., Gordon, L. B., & Djabali, K. (2006). Hutchinson-Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-lamin A G608G antibody. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2154–2159.ADSCrossRefGoogle Scholar
  75. 75.
    McClintock, D., et al. (2007). The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One, 2(12), e1269.ADSCrossRefGoogle Scholar
  76. 76.
    McCrann, D. J., et al. (2009). Upregulation of Nox4 in the aging vasculature and its association with smooth muscle cell polyploidy. Cell Cycle, 8(6), 902–908.CrossRefGoogle Scholar
  77. 77.
    McNulty, M., et al. (2005). Aging is associated with increased matrix metalloproteinase-2 activity in the human aorta. American Journal of Hypertension, 18(4 Pt 1), 504–509.CrossRefGoogle Scholar
  78. 78.
    Meerwaldt, R., et al. (2004). Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia, 47(7), 1324–1330.CrossRefGoogle Scholar
  79. 79.
    Meschiari, C. A., et al. (2017). The impact of aging on cardiac extracellular matrix. Geroscience, 39(1), 7–18.CrossRefGoogle Scholar
  80. 80.
    Minamino, T. (2002). Endothelial cell senescence in human atherosclerosis: Role of telomere in endothelial dysfunction. Circulation, 105(13), 1541–1544.CrossRefGoogle Scholar
  81. 81.
    Monaco, C., et al. (2004). Canonical pathway of nuclear factor kappa B activation selectively regulates proinflammatory and prothrombotic responses in human atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 101(15), 5634–5639.ADSCrossRefGoogle Scholar
  82. 82.
    Nakano-Kurimoto, R., et al. (2009). Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. American Journal of Physiology. Heart and Circulatory Physiology, 297(5), H1673–H1684.CrossRefGoogle Scholar
  83. 83.
    Newaz, M. A., Yousefipour, Z., & Oyekan, A. (2006). Oxidative stress-associated vascular aging is xanthine oxidase-dependent but not NAD(P)H oxidase-dependent. Journal of Cardiovascular Pharmacology, 48(3), 88–94.CrossRefGoogle Scholar
  84. 84.
    Niccoli, T., & Partridge, L. (2012). Ageing as a risk factor for disease. Current Biology, 22(17), R741–R752.CrossRefGoogle Scholar
  85. 85.
    O'Connell, M. K., et al. (2008). The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biology, 27(3), 171–181.CrossRefGoogle Scholar
  86. 86.
    Olive, M., et al. (2010). Cardiovascular pathology in Hutchinson-Gilford progeria: Correlation with the vascular pathology of aging. Arteriosclerosis Thrombosis and Vascular Biology, 30(11), 2301–U636.CrossRefGoogle Scholar
  87. 87.
    Osorio, F. G., Navarro, C. L., Cadiñanos, J., López-Mejía, I. C., Quirós, P. M., Bartoli, C., et al. (2011). Splicing-directed therapy in a new mouse model of human accelerated aging. Science Translational Medicine, 3(106), 106ra107.CrossRefGoogle Scholar
  88. 88.
    Paneni, F., et al. (2017). The aging cardiovascular system understanding it at the cellular and clinical levels. Journal of the American College of Cardiology, 69(15), 1952–1967.CrossRefGoogle Scholar
  89. 89.
    Petersen-Jones, H. G., et al. (2015). Transglutaminase activity is decreased in large arteries from hypertensive rats compared with normotensive controls. American Journal of Physiology. Heart and Circulatory Physiology, 308(6), H592–H602.CrossRefGoogle Scholar
  90. 90.
    Philip, J. T., & Dahl, K. N. (2008). Nuclear mechanotransduction: Response of the lamina to extracellular stress with implications in aging. Journal of Biomechanics, 41(15), 3164–3170.CrossRefGoogle Scholar
  91. 91.
    Prakobwong, S., et al. (2010). Involvement of MMP-9 in peribiliary fibrosis and cholangiocarcinogenesis via Rac1-dependent DNA damage in a hamster model. International Journal of Cancer, 127(11), 2576–2587.CrossRefGoogle Scholar
  92. 92.
    Price, G. M., & Tien, J. (2011). Methods for forming human microvascular tubes in vitro and measuring their macromolecular permeability. Methods in Molecular Biology, 671, 281–293.CrossRefGoogle Scholar
  93. 93.
    Prinzinger, R. (2005). Programmed ageing: The theory of maximal metabolic scope. How does the biological clock tick? EMBO Reports, 6(Suppl 1), S14–S19.CrossRefGoogle Scholar
  94. 94.
    Qin, X., et al. (2006). Matrix metalloproteinase inhibition attenuates aortic calcification. Arteriosclerosis Thrombosis and Vascular Biology, 26(7), 1510–1516.CrossRefGoogle Scholar
  95. 95.
    Redon, C. E., et al. (2011). Recent developments in the use of γ -H2AX as a quantitative DNA double-strand break biomarker. Aging, 3(2), 168–174.CrossRefGoogle Scholar
  96. 96.
    Reiser, K., McCormick, R. J., & Rucker, R. B. (1992). Enzymatic and nonenzymatic cross-linking of collagen and elastin. The FASEB Journal, 6(7), 2439–2449.CrossRefGoogle Scholar
  97. 97.
    Ribas, J., Zhang, Y. S., Pitrez, P. R., Leijten, J., Miscuglio, M., Rouwkema, J., et al. (2017). Biomechanical strain exacerbates inflammation on a progeria-on-a-chip model. Small, 13(15). Scholar
  98. 98.
    Rice, K. M., et al. (2005). Effects of aging on pressure-induced MAPK activation in the rat aorta. Pflügers Archiv, 450(3), 192–199.CrossRefGoogle Scholar
  99. 99.
    Rodriguez-Manas, L., et al. (2009). Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging Cell, 8(3), 226–238.CrossRefGoogle Scholar
  100. 100.
    Rosenbloom, J., Abrams, W. R., & Mecham, R. (1993). Extracellular matrix 4: The elastic fiber. The FASEB Journal, 7(13), 1208–1218.CrossRefGoogle Scholar
  101. 101.
    Ross, C. A., & Poirier, M. A. (2004). Protein aggregation and neurodegenerative disease. Nature Medicine, 10(7), S10–S17.CrossRefGoogle Scholar
  102. 102.
    Ryan, A. J., et al. (2016). Towards 3D in vitro models for the study of cardiovascular tissues and disease. Drug Discovery Today, 21(9), 1437–1445.CrossRefGoogle Scholar
  103. 103.
    Scaffidi, P., & Misteli, T. (2006). Lamin A-dependent nuclear defects in human aging. Science, 312(5776), 1059–1063.ADSCrossRefGoogle Scholar
  104. 104.
    Schleicher, E. D., Wagner, E., & Nerlich, A. G. (1997). Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. The Journal of Clinical Investigation, 99(3), 457–468.CrossRefGoogle Scholar
  105. 105.
    Schrage, W. G., Eisenach, J. H., & Joyner, M. J. (2007). Ageing reduces nitric-oxide- and prostaglandin-mediated vasodilatation in exercising humans. The Journal of Physiology, 579(Pt 1), 227–236.CrossRefGoogle Scholar
  106. 106.
    Seals, D. R., et al. (2006). Modulatory influences on ageing of the vasculature in healthy humans. Experimental Gerontology, 41(5), 501–507.ADSCrossRefGoogle Scholar
  107. 107.
    Senatus, L. M., & Schmidt, A. M. (2017). The AGE-RAGE Axis: Implications for age-associated arterial diseases. Frontiers in Genetics, 8, 187.CrossRefGoogle Scholar
  108. 108.
    Shao, J., et al. (2009). Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab on a Chip, 9(21), 3118–3125.CrossRefGoogle Scholar
  109. 109.
    Shi, Z. D., & Tarbell, J. M. (2011). Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Annals of Biomedical Engineering, 39(6), 1608–1619.CrossRefGoogle Scholar
  110. 110.
    Song, J. W., et al. (2005). Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Analytical Chemistry, 77(13), 3993–3999.CrossRefGoogle Scholar
  111. 111.
    Song, M. J., et al. (2014). Shear stress-induced mechanotransduction protein deregulation and vasculopathy in a mouse model of progeria. Stem Cell Research & Therapy, 5(2), 41.CrossRefGoogle Scholar
  112. 112.
    Stuehr, D., Pou, S., & Rosen, G. M. (2001). Oxygen reduction by nitric-oxide synthases. The Journal of Biological Chemistry, 276(18), 14533–14536.CrossRefGoogle Scholar
  113. 113.
    Taddei, S., et al. (1997). Hypertension causes premature aging of endothelial function in humans. Hypertension, 29(3), 736–743.CrossRefGoogle Scholar
  114. 114.
    Tam, J., et al. (2014). A microfluidic platform for correlative live-cell and super-resolution microscopy. PLoS One, 9(12), e115512.ADSCrossRefGoogle Scholar
  115. 115.
    Tian, X. L., & Li, Y. (2014). Endothelial cell senescence and age-related vascular diseases. Journal of Genetics and Genomics, 41(9), 485–495.ADSCrossRefGoogle Scholar
  116. 116.
    Toda, N. (2012). Age-related changes in endothelial function and blood flow regulation. Pharmacology & Therapeutics, 133(2), 159–176.CrossRefGoogle Scholar
  117. 117.
    Tsamis, A., Krawiec, J. T., & Vorp, D. A. (2013). Elastin and collagen fibre microstructure of the human aorta in ageing and disease: A review. Journal of the Royal Society Interface, 10(83), 20121004.CrossRefGoogle Scholar
  118. 118.
    Tsamis, A., Rachev, A., & Stergiopulos, N. (2011). A constituent-based model of age-related changes in conduit arteries. American Journal of Physiology. Heart and Circulatory Physiology, 301(4), H1286–H1301.CrossRefGoogle Scholar
  119. 119.
    Tsioufis, C., et al. (2007). Low-grade inflammation and hypoadiponectinaemia have an additive detrimental effect on aortic stiffness in essential hypertensive patients. European Heart Journal, 28(9), 1162–1169.CrossRefGoogle Scholar
  120. 120.
    Ungvari, Z., et al. (2011). Vascular oxidative stress in aging: A homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. American Journal of Physiology. Heart and Circulatory Physiology, 301(2), H363–H372.CrossRefGoogle Scholar
  121. 121.
    United Nations, D.E.S.A.P.D. (2015). World Population Ageing 2015.Google Scholar
  122. 122.
    Valko, M., et al. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44–84.CrossRefGoogle Scholar
  123. 123.
    van der Loo, B., et al. (2000). Enhanced peroxynitrite formation is associated with vascular aging. The Journal of Experimental Medicine, 192(12), 1731–1744.CrossRefGoogle Scholar
  124. 124.
    van der Loo, B., et al. (2009). Signalling processes in endothelial ageing in relation to chronic oxidative stress and their potential therapeutic implications in humans. Experimental Physiology, 94(3), 305–310.CrossRefGoogle Scholar
  125. 125.
    Vanhoutte, P. M., Feletou, M., & Taddei, S. (2005). Endothelium-dependent contractions in hypertension. British Journal of Pharmacology, 144(4), 449–458.CrossRefGoogle Scholar
  126. 126.
    Varga, R., et al. (2006). Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3250–3255.ADSCrossRefGoogle Scholar
  127. 127.
    Victorelli, S., & Passos, J. F. (2017). Telomeres and cell senescence - size matters not. eBioMedicine, 21, 14–20.CrossRefGoogle Scholar
  128. 128.
    Villa-Bellosta, R., et al. (2013). Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation, 127(24), 2442–2451.CrossRefGoogle Scholar
  129. 129.
    Wagenseil, J. E., & Mecham, R. P. (2009). Vascular extracellular matrix and arterial mechanics. Physiological Reviews, 89(3), 957–989.CrossRefGoogle Scholar
  130. 130.
    Wang, M., et al. (2006). Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(7), 1503–1509.CrossRefGoogle Scholar
  131. 131.
    Wang, M., et al. (2014). Proinflammation: The key to arterial aging. Trends in Endocrinology and Metabolism, 25(2), 72–79.CrossRefGoogle Scholar
  132. 132.
    Wang, M., et al. (2015). Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension, 65(4), 698–703.CrossRefGoogle Scholar
  133. 133.
    Wong, A. D., & Searson, P. C. (2014). Live-cell imaging of invasion and intravasation in an artificial microvessel platform. Cancer Research, 74(17), 4937–4945.CrossRefGoogle Scholar
  134. 134.
    Wu, Z., et al. (2015). Role of p38 mitogen-activated protein kinase in vascular endothelial aging: Interaction with Arginase-II and S6K1 signaling pathway. Aging (Albany NY), 7(1), 70–81.CrossRefGoogle Scholar
  135. 135.
    Wynn, T. A. (2008). Cellular and molecular mechanisms of fibrosis. The Journal of Pathology, 214(2), 199–210.CrossRefGoogle Scholar
  136. 136.
    Xu, J., & Shi, G. P. (2014). Vascular wall extracellular matrix proteins and vascular diseases. Biochimica et Biophysica Acta, 1842(11), 2106–2119.CrossRefGoogle Scholar
  137. 137.
    Yang, S. H., et al. (2005). Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10291–10296.ADSCrossRefGoogle Scholar
  138. 138.
    Zhang, H. Y., Xiong, Z. M., & Cao, K. (2014). Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1. Proceedings of the National Academy of Sciences of the United States of America, 111(22), E2261–E2270.ADSCrossRefGoogle Scholar
  139. 139.
    Zhang, J., et al. (2011). A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell, 8(1), 31–45.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Patrícia R. Pitrez
    • 1
  • Helena R. Aires
    • 1
  • Inês Tomé
    • 1
  • Rita Sá Ferreira
    • 2
  • Lino Ferreira
    • 1
    • 2
    Email author
  1. 1.Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.Center of Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations