Middle Fossa Approach to Vestibular Schwannomas

  • Ihsan Dogan
  • Omer S. Sahin
  • Joseph P. RocheEmail author


Since the technical description by William House in 1961, the middle cranial fossa approach to the internal acoustic canal has become one of the quintessential surgical approaches for accessing the seventh and eighth cranial nerves and the upper cerebellopontine angle. In this chapter the MCF approach comprises an extradural, subtemporal exposure and removal of a portion of the superior surface of the temporal bone to expose the posterior cranial fossa. House and Doyle performed the first vestibular schwannoma removal via the MCF approach in 1961. The MCF approach and its extensions can be used to treat a wide variety of lesions including schwannomas of the 5th through 8th cranial nerves, meningiomas of the IAC, CPA, and petroclival region, and cholesterol granulomas and cholesteatomas, petrous apex infections, chondrosarcomas of foremen lacerum, vascular lesions of the ventral skull base, and nerve decompressions for inflammatory neuropathies. When considering patient’s historical and exam findings, it is important to note that patients who are considered good surgical candidates for an MCF approach will have small to medium-sized tumors, typically <1.5 cm in length and thus, symptoms and findings are often subtle. There are several anatomic considerations unique to the MCF approach that warrant special consideration: the lateral skull and temporal bone including the temporal and infratemporal fossa contents, location and pathway of the frontal branch of the facial nerve, the relationships of the middle cranial fossa floor, otic capsule and IAC relationships, and strategies for finding the IAC. The 3-dimensional boundaries of the anterior petrous apex are: the bony skull base superiorly, the carotid artery laterally, the posterior fossa dura medially, the IAC dura posteriorly and the inferior petrosal sinus inferiorly. Microsurgical removal via the MCF approach is the preferred management strategy patients preferring surgical treatment, who have lesions that do not impact the brainstem and who have preserved hearing of a least AAO-HNS CHE Class B or WRS II. If the preoperative hearing is at the AAO-HNS CHE class A or WRS I limits or better, we quote a 70% chance to preserve at least a WRS I postoperative hearing level if the tumor is 10 mm in length or smaller, which includes the IAC and CPA portions. The preoperative evaluation consists of diagnostic testing to establish the identity and location of the lesion, pure-tone and speech audiometry to determine residual hearing ability and classification, auditory evoked electrical potential testing if intraoperative evoked potential monitoring is to be utilized, and the testing to ensure that the patient is an appropriate surgical candidate. There are three main methods for identification of the internal acoustic canal: (1) identification of the geniculate ganglion and then labyrinthine segment of the facial nerve (House method), (2) identification of the lumen of the SSCC (Fisch method), and (3) identification of the anterior and medial surface of the IAC dura by opening the anterior petrous apex (Garcia-Ibanez method). The main downside to this approach is that the facial nerve is at risk for injury as exposure of the ganglion does not provide any exposure to the IAC and only serves as a landmark for which to base further dissection.


Middle fossa approach Vestibular schwannoma Acoustic neuroma Internal acoustic canal Facial nerve Hearing preservation Cerebellopontine angle 

Supplementary material

Video 3.1

Middle Fossa Approach for Intracanalicular Tumor: Step by Step Demonstration of Opening Technique (ZIP 630813 kb)

Video 3.2

Demonstration of Middle Fossa Approach in Cadaveric Dissection: 3D Video (ZIP 2112790 kb)

Video 3.3

Microsurgical Resection of Intracanalicular Vestibular Schwannoma with Hearing Preservation via Middle Fossa Approach: 3D Operative Video (ZIP 1477279 kb)

Video 3.4

Microsurgical Resection of Intracanalicular Tumor Mimicking Schwannoma via Middle Fossa Approach: 3D Operative Video (ZIP 1064383 kb)


  1. 1.
    House WF. Surgical exposure of the internal auditory canal and its contents through the middle, cranial fossa. Laryngoscope. 1961;71:1363–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Monfared A, Mudry A, Jackler R. The history of middle cranial fossa approach to the cerebellopontine angle. Otol Neurotol. 2010;31(4):691–6.PubMedGoogle Scholar
  3. 3.
    Hartley F. Intracranial neurectomy of the second and third divisions of the fifth nerve: a new method. N Y Med J. 1892;55:317–9.Google Scholar
  4. 4.
    Horsley V. Remarks on the various surgical procedures devised for the relief or cure of trigeminal neuralgia (Tic Douloureux). Br Med J. 1891;2(1613):1139–43.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Krause F. Resection des Trigeminus innerhalb der Schaidelhohle. Verh Dtsch Ges Chir. 1892;21:199–210.Google Scholar
  6. 6.
    Cushing H. Landmark article April 28, 1900: A method of total extirpation of the Gasserian ganglion for trigeminal neuralgia. By a route through the temporal fossa and beneath the middle meningeal artery. By Harvey Cushing. JAMA. 1983;250(4):519–28.PubMedCrossRefGoogle Scholar
  7. 7.
    Rosegay H. The Krause operations. J Neurosurg. 1992;76(6):1032–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Parry RH. A case of tinnitus and vertigo treated by division of the auditory nerve. J Laryngol Otol. 1904;105(12):1099–100.CrossRefGoogle Scholar
  9. 9.
    Putnam TJ. Treatment of recurrent vertigo (Ménière’s syndrome) by subtemporal destruction of the labyrinth. Arch Otolaryngol. 1938;27(2):161–8.CrossRefGoogle Scholar
  10. 10.
    Gardner WJ, Stowell A, Dutlinger R. Resection of the greater superficial petrosal nerve in the treatment of unilateral headache. J Neurosurg. 1947;4(2):105–14.PubMedCrossRefGoogle Scholar
  11. 11.
    Kurze T, Doyle JB Jr. Extradural intracranial (middle fossa) approach to the internal auditory canal. J Neurosurg. 1962;19:1033–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Brackmann DE, House JR 3rd, Hitselberger WE. Technical modifications to the middle fossa craniotomy approach in removal of acoustic neuromas. Am J Otol. 1994;15(5):614–9.PubMedGoogle Scholar
  13. 13.
    Fisch U. Transtemporal surgery of the internal auditory canal. Report of 92 cases, technique, indications and results. Adv Otorhinolaryngol. 1970;17:203–40.PubMedGoogle Scholar
  14. 14.
    Gantz BJ, et al. Middle cranial fossa acoustic neuroma excision: results and complications. Ann Otol Rhinol Laryngol. 1986;95(5 Pt 1):454–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Meyer TA, et al. Small acoustic neuromas: surgical outcomes versus observation or radiation. Otol Neurotol. 2006;27(3):380–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia-Ibanez E, Garcia-Ibanez JL. Middle fossa vestibular neurectomy: a report of 373 cases. Otolaryngol Head Neck Surg. 1980;88(4):486–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Bochenek Z, Kukwa A. An extended approach through the middle cranial fossa to the internal auditory meatus and the cerebello-pontine angle. Acta Otolaryngol. 1975;80(5–6):410–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Kanzaki J, et al. A modified extended middle cranial fossa approach for acoustic tumors. Arch Otorhinolaryngol. 1977;217(1):119–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Kanzaki J, Shiobara R, Toya S. Classification of the extended middle cranial fossa approach. Acta Otolaryngol Suppl. 1991;487:6–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Wigand ME, Haid T, Berg M. The enlarged middle cranial fossa approach for surgery of the temporal bone and of the cerebellopontine angle. Arch Otorhinolaryngol. 1989;246(5):299–302.PubMedCrossRefGoogle Scholar
  21. 21.
    Kawase T, et al. Transpetrosal approach for aneurysms of the lower basilar artery. J Neurosurg. 1985;63(6):857–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Blevins NH, et al. Combined transpetrosal-subtemporal craniotomy for clival tumors with extension into the posterior fossa. Laryngoscope. 1995;105(9 Pt 1):975–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Al-Mefty O, Fox JL, Smith RR. Petrosal approach for petroclival meningiomas. Neurosurgery. 1988;22(3):510–7.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sekhar LN, et al. Meningiomas involving the clivus: a six-year experience with 41 patients. Neurosurgery. 1990:27(5):764–81. discussion 781.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Erkmen K, Pravdenkova S, Al-Mefty O. Surgical management of petroclival meningiomas: factors determining the choice of approach. Neurosurg Focus. 2005;19(2):E7.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Zentner J, et al. Petroclival meningiomas: is radical resection always the best option? J Neurol Neurosurg Psychiatry. 1997;62(4):341–5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Spetzler RF, Daspit CP, Pappas CT. The combined supra- and infratentorial approach for lesions of the petrous and clival regions: experience with 46 cases. J Neurosurg. 1992;76(4):588–99.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Megerian CA, et al. The subtemporal-transpetrous approach for excision of petroclival tumors. Am J Otol. 1996;17(5):773–9.PubMedGoogle Scholar
  29. 29.
    Danner C, Cueva RA. Extended middle fossa approach to the petroclival junction and anterior cerebellopontine angle. Otol Neurotol. 2004;25(5):762–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Roche JP, et al. Treatment of lateral skull base and posterior cranial fossa lesions utilizing the extended middle cranial fossa approach. Otol Neurotol. 2017;38(5):742–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Friedman RA, et al. Anterior petrosectomy approach to infraclinoidal basilar artery aneurysms: the emerging role of the neuro-otologist in multidisciplinary management of basilar artery aneurysms. Laryngoscope. 1997;107(7):977–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Shen T, et al. The evolution of surgical approaches for posterior fossa meningiomas. Otol Neurotol. 2004;25(3):394–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Fisch U. Surgery for Bell’s palsy. Arch Otolaryngol. 1981;107(1):1–11.PubMedCrossRefGoogle Scholar
  34. 34.
    Fisch U, Esslen E. Total intratemporal exposure of the facial nerve. Pathologic findings in Bell's palsy. Arch Otolaryngol. 1972;95(4):335–41.PubMedCrossRefGoogle Scholar
  35. 35.
    Gantz BJ, et al. Surgical management of Bell’s palsy. Laryngoscope. 1999;109(8):1177–88.PubMedCrossRefGoogle Scholar
  36. 36.
    Selesnick SH, Jackler RK, Pitts LW. The changing clinical presentation of acoustic tumors in the MRI era. Laryngoscope. 1993;103(4 Pt 1):431–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Roehm PC, Gantz BJ. Management of acoustic neuromas in patients 65 years or older. Otol Neurotol. 2007;28(5):708–14.PubMedCrossRefGoogle Scholar
  38. 38.
    Lustig LR, et al. Acoustic neuromas presenting with normal or symmetrical hearing: factors associated with diagnosis and outcome. Am J Otol. 1998;19(2):212–8.PubMedGoogle Scholar
  39. 39.
    Anderson TD, et al. Prevalence of unsuspected acoustic neuroma found by magnetic resonance imaging. Otolaryngol Head Neck Surg. 2000;122(5):643–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Mirz F, et al. Incidence and growth pattern of vestibular schwannomas in a Danish county, 1977-98. Acta Otolaryngol Suppl. 2000;543:30–3.PubMedGoogle Scholar
  41. 41.
    Stangerup SE, et al. Change in hearing during ‘wait and scan’ management of patients with vestibular schwannoma. J Laryngol Otol. 2008;122(7):673–81.PubMedCrossRefGoogle Scholar
  42. 42.
    Lin D, et al. The prevalence of “incidental” acoustic neuroma. Arch Otolaryngol Head Neck Surg. 2005;131(3):241–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Brackmann DE, Barrs DM. Assessing recovery of facial function following acoustic neuroma surgery. Otolaryngol Head Neck Surg. 1984;92(1):88–93.PubMedCrossRefGoogle Scholar
  44. 44.
    House JW, Brackmann DE. Facial nerve grading system. Otolaryngol Head Neck Surg. 1985;93(2):146–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Roche J, et al. Ultra long-term audiometric outcomes in the treatment of vestibular schwannoma with the middle cranial fossa approach. Otol Neurotol. 2018;39(2):e151–57.CrossRefGoogle Scholar
  46. 46.
    Brackmann DE, et al. Prognostic factors for hearing preservation in vestibular schwannoma surgery. Am J Otol. 2000;21(3):417–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Shelton C, et al. Acoustic tumor surgery. Prognostic factors in hearing conversation. Arch Otolaryngol Head Neck Surg. 1989;115(10):1213–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Slattery WH 3rd, Brackmann DE, Hitselberger W. Middle fossa approach for hearing preservation with acoustic neuromas. Am J Otol. 1997;18(5):596–601.PubMedGoogle Scholar
  49. 49.
    Dornhoffer JL, Helms J, Hoehmann DH. Hearing preservation in acoustic tumor surgery: results and prognostic factors. Laryngoscope. 1995;105(2):184–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Abele TA, et al. Diagnostic accuracy of screening MR imaging using unenhanced axial CISS and coronal T2WI for detection of small internal auditory canal lesions. AJNR Am J Neuroradiol. 2014;35(12):2366–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Goddard JC, Schwartz MS, Friedman RA. Fundal fluid as a predictor of hearing preservation in the middle cranial fossa approach for vestibular schwannoma. Otol Neurotol. 2010;31(7):1128–34.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Davis RA, et al. Surgical anatomy of the facial nerve and parotid gland based upon a study of 350 cervicofacial halves. Surg Gynecol Obstet. 1956;102(4):385–412.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Weber PC, Gantz BJ. Results and complications from acoustic neuroma excision via middle cranial fossa approach. Am J Otol. 1996;17(4):669–75.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Cueva RA, Mastrodimos B. Approach design and closure techniques to minimize cerebrospinal fluid leak after cerebellopontine angle tumor surgery. Otol Neurotol. 2005;26(6):1176–81.PubMedCrossRefGoogle Scholar
  55. 55.
    Jackler RK, Gladstone HB. Locating the internal auditory canal during the middle fossa approach: an alternative technique. Skull Base Surg. 1995;5(2):63–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    King TT, Morrison AW. Primary facial nerve tumors within the skull. J Neurosurg. 1990;72(1):1–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Schwartz MS, et al. Translabyrinthine microsurgical resection of small vestibular schwannomas. J Neurosurg. 2018;129(1):128–36.Google Scholar
  58. 58.
    McMenomey SO, et al. Facial nerve neuromas presenting as acoustic tumors. Am J Otol. 1994;15(3):307–12.PubMedGoogle Scholar
  59. 59.
    Mowry S, Hansen M, Gantz B. Surgical management of internal auditory canal and cerebellopontine angle facial nerve schwannoma. Otol Neurotol. 2012;33(6):1071–6.PubMedGoogle Scholar
  60. 60.
    McRackan TR, et al. Facial nerve outcomes in facial nerve schwannomas. Otol Neurotol. 2012;33(1):78–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Wilkinson EP, et al. Evolution in the management of facial nerve schwannoma. Laryngoscope. 2011;121(10):2065–74.PubMedCrossRefGoogle Scholar
  62. 62.
    Semaan MT, Slattery WH, Brackmann DE. Geniculate ganglion hemangiomas: clinical results and long-term follow-up. Otol Neurotol. 2010;31(4):665–70.PubMedGoogle Scholar
  63. 63.
    Angeli SI, Brackmann DE. Is surgical excision of facial nerve schwannomas always indicated? Otolaryngol Head Neck Surg. 1997;117(6):S144–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Channer GA, et al. Management outcomes of facial nerve tumors: comparative outcomes with observation, CyberKnife, and surgical management. Otolaryngol Head Neck Surg. 2012;147(3):525–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Lahlou G, et al. Geniculate ganglion tumors: clinical presentation and surgical results. Otolaryngol Head Neck Surg. 2016;155(5):850–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee WJ, Isaacson JE. Postoperative imaging and follow-up of vestibular schwannomas. Otol Neurotol. 2005;26(1):102–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Carlson ML, et al. Magnetic resonance imaging surveillance following vestibular schwannoma resection. Laryngoscope. 2012;122(2):378–88.PubMedCrossRefGoogle Scholar
  68. 68.
    Miller ME, et al. Long-term MRI surveillance after microsurgery for vestibular schwannoma. Laryngoscope. 2017;127(9):2132–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Arts HA, et al. Hearing preservation and facial nerve outcomes in vestibular schwannoma surgery: results using the middle cranial fossa approach. Otol Neurotol. 2006;27(2):234–41.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Wang AC, et al. Durability of hearing preservation after microsurgical treatment of vestibular schwannoma using the middle cranial fossa approach. J Neurosurg. 2013;119(1):131–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Kutz JW Jr, et al. Hearing preservation using the middle fossa approach for the treatment of vestibular schwannoma. Neurosurgery. 2012;70(2): 334–40. discussion 340–1.PubMedCrossRefGoogle Scholar
  72. 72.
    Gjuric M., Wigand ME, Wolf SR. Enlarged middle fossa vestibular schwannoma surgery: experience with 735 cases. Otol Neurotol. 2001; 22(2):223–30. discussion 230–1.Google Scholar
  73. 73.
    Holsinger FC, Coker NJ, Jenkins HA. Hearing preservation in conservation surgery for vestibular schwannoma. Am J Otol. 2000;21(5):695–700.PubMedGoogle Scholar
  74. 74.
    Kumon Y, et al. Selection of surgical approaches for small acoustic neurinomas. Surg Neurol. 2000;53(1):52–9. discussion 59–60.PubMedCrossRefGoogle Scholar
  75. 75.
    Staecker H, et al. Hearing preservation in acoustic neuroma surgery: middle fossa versus retrosigmoid approach. Am J Otol. 2000;21(3):399–404.PubMedCrossRefGoogle Scholar
  76. 76.
    Chee GH, Nedzelski JM, Rowed D. Acoustic neuroma surgery: the results of long-term hearing preservation. Otol Neurotol. 2003;24(4):672–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Colletti V, Fiorino F. Is the middle fossa approach the treatment of choice for intracanalicular vestibular schwannoma? Otolaryngol Head Neck Surg. 2005;132(3):459–66.PubMedCrossRefGoogle Scholar
  78. 78.
    Gjuric M, et al. Vestibular schwannoma volume as a predictor of hearing outcome after surgery. Otol Neurotol. 2007;28(6):822–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Phillips DJ, et al. Predictive factors of hearing preservation after surgical resection of small vestibular schwannomas. Otol Neurotol. 2010;31(9):1463–8.PubMedGoogle Scholar
  80. 80.
    Friedman RA, et al. Long-term hearing preservation after middle fossa removal of vestibular schwannoma. Otolaryngol Head Neck Surg. 2003;129(6):660–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Hilton CW, et al. Late failure rate of hearing preservation after middle fossa approach for resection of vestibular schwannoma. Otol Neurotol. 2011;32(1):132–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Quist TS, et al. Hearing preservation after middle fossa vestibular schwannoma removal: are the results durable? Otolaryngol Head Neck Surg. 2015;152(4):706–11.PubMedCrossRefGoogle Scholar
  83. 83.
    Woodson EA, et al. Long-term hearing preservation after microsurgical excision of vestibular schwannoma. Otol Neurotol. 2010;31(7):1144–52.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Betchen SA, Walsh J, Post KD. Long-term hearing preservation after surgery for vestibular schwannoma. J Neurosurg. 2005;102(1):6–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Lin VY, et al. Unilateral acoustic neuromas: long-term hearing results in patients managed with fractionated stereotactic radiotherapy, hearing preservation surgery, and expectantly. Laryngoscope. 2005;115(2):292–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Carlson ML, et al. Long-term hearing outcomes following stereotactic radiosurgery for vestibular schwannoma: patterns of hearing loss and variables influencing audiometric decline. J Neurosurg. 2013;118(3):579–87.PubMedCrossRefGoogle Scholar
  87. 87.
    Hasegawa T, et al. Factors associated with hearing preservation after Gamma Knife surgery for vestibular schwannomas in patients who retain serviceable hearing. J Neurosurg. 2011;115(6):1078–86.PubMedCrossRefGoogle Scholar
  88. 88.
    Watanabe S, et al. Stereotactic radiosurgery for vestibular schwannomas: average 10-year follow-up results focusing on long-term hearing preservation. J Neurosurg. 2016;125(Suppl 1):64–72.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  2. 2.Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Section of Otology/NeurotologyUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations