Vestibular Schwannomas: Neurology, Neurophysiology and Anatomy

  • Sima Sayyahmelli
  • Lucas Leonhard
  • Burak Ozaydin
  • Joseph P. RocheEmail author


Seventh and eighth nerves originate from the lateral aspect of the brainstem, traverse CPA cistern and IAC terminate in the inner ear, where they provide innervation of the vestibular end organs. The CPA cistern is an expansion of the subarachnoid space between the lateral lobe of the cerebellum, cerebellar peduncles, and lateral pons medially and the temporal bone laterally. In the far lateral IAC, CoN enters the modiolus of the cochlea at the cochlear aperture, FN enters the meatal foramen to become the labyrinthine segment of FN, and the SVN & IVN enter the labyrinth of the inner ear. Chorda tympani nerve enters the middle ear just medial to the tympanic membrane through an opening, the iter chordae posterior, runs across the middle ear space and then exits the middle ear into the infratemporal fossa through Huguier’s canal. A series of interconnected spaces within the otic capsule form the bony labyrinth consisting of the cochlea, vestibule, semicircular canals and vestibular aqueduct. AICA, and occasionally the basilar artery provide the blood supply to the cochlea and vestibular organs through labyrinthine artery. Objective tinnitus is the perception of sound from an internal sound source such as turbulent blood flow within a vascular structure or blood pressure pulsations transmitted from the dura to the inner ear. Vertigo related to peripheral vestibular dysfunction is typically perceived as rotational movement and lasts for several hours to several days but eventually subsides as the central nervous system compensates for the peripheral dysfunction. Acoustic reflex thresholds are determined by playing a stimulus while monitoring for a change in the compliance of the middle ear system. Electrophysiologic testing of the inner ear and auditory system, ABR/BAER or ECoG has no significant role in diagnosis of VS as these tests have been replaced by cross sectional imaging. Facial Nerve Monitoring is commonly utilized during the surgical treatment of vestibular schwannoma and is particularly useful in medium and large sized tumors. However, FNM does not replace the detailed anatomic knowledge and technical skill required to operate near the facial nerve. Cochlear nerve physiology can be monitored intraoperatively when hearing preservation is a goal of surgery and provides the microsurgeon with a valuable tool for assessing the impact of surgical manipulations on the integrity and function of the auditory system.


Neurotology Cerebellopontine angle Vestibular schwannoma Acoustic neuroma Facial nerve Vestibular nerve Cochlear nerve Vestibulocochlear nerve Labyrinth Internal acoustic canal 


  1. 1.
    Rhoton AL Jr. Jugular foramen. Neurosurgery. 2000;47(3 Suppl):S267–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Rhoton AL Jr. The temporal bone and transtemporal approaches. Neurosurgery. 2000;47(3 Suppl):S211–65.PubMedCrossRefGoogle Scholar
  3. 3.
    Rhoton AL Jr. The cerebellar arteries. Neurosurgery. 2000;47(3 Suppl):S29–68.PubMedCrossRefGoogle Scholar
  4. 4.
    Rhoton AL Jr. The cerebellopontine angle and posterior fossa cranial nerves by the retrosigmoid approach. Neurosurgery. 2000;47(3 Suppl):S93–129.PubMedCrossRefGoogle Scholar
  5. 5.
    Rhoton AL Jr. The posterior fossa cisterns. Neurosurgery. 2000;47(3 Suppl):S287–97.PubMedCrossRefGoogle Scholar
  6. 6.
    Rhoton AL Jr. The posterior fossa veins. Neurosurgery. 2000;47(3 Suppl):S69–92.PubMedCrossRefGoogle Scholar
  7. 7.
    Pickles JO. An introduction to the physiology of hearing. 4th ed. Bingley: Emerald Group Publishing Limited; 2012. p. 430.Google Scholar
  8. 8.
    Yost WA. Fundamentals of hearing: an introduction. 5th ed. Boston, MA: Brill; 2013.Google Scholar
  9. 9.
    Minor LB. Physiological principles of vestibular function on earth and in space. Otolaryngol Head Neck Surg. 1998;118(3 Pt 2):S5–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Baloh RW, Honrubia V, Kerber KA. Baloh and Honrubia’s clinical neurophysiology of the vestibular system. 4th ed. Oxford: Oxford University Press; 2010. p. 480.Google Scholar
  11. 11.
    Carey JP, Della Santina CC. Principles of applied vestibular physiology. In: Flint PW, Haughey BH, Lund VJ, Niparko JK, Robbins KT, Thomas JR, et al., editors. Cumming’s otolaryngology head & neck surgery. 6th ed. Philadelphia, PA: Mosby; 2015. p. 2492–524.Google Scholar
  12. 12.
    Hullar T, Lloyd B. The neurotologic examination. In: Jackler R, Brackmann D, editors. Neurotology. 2nd ed. Philadelphia, PA: Elsevier Mosby; 2005. p. 215–27.CrossRefGoogle Scholar
  13. 13.
    Hullar TE, Zee DS, Minor LB. Evaluation of the patient with dizziness. In: Flint PW, Haughey BH, Lund VJ, Niparko JK, Robbins KT, Thomas JR, et al., editors. Cumming’s otolaryngology head & neck surgery. 6th ed. Philadelphia, PA: Mosby; 2005. p. 2525–47.Google Scholar
  14. 14.
    Selesnick SH, Jackler RK. Atypical hearing loss in acoustic neuroma patients. Laryngoscope. 1993;103(4 Pt 1):437–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Fahy C, Nikolopoulos TP, O’Donoghue GM. Acoustic neuroma surgery and tinnitus. Eur Arch Otorhinolaryngol. 2002;259(6):299–301.PubMedGoogle Scholar
  16. 16.
    House JW, Brackmann DE. Facial nerve grading system. Otolaryngol Head Neck Surg. 1985;93(2):146–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Brackmann DE, Barrs DM. Assessing recovery of facial function following acoustic neuroma surgery. Otolaryngology Head Neck Surg. 1984;92(1):88–93.CrossRefGoogle Scholar
  18. 18.
    Hitselberger WE, House WF. Acoustic neuroma diagnosis. External auditory canal hypesthesia as an early sign. Arch Otolaryngol. 1966;83(3):218–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Eshraghi AA, Buchman CA, Telischi FF. Sensory auricular branch of the facial nerve. Otol Neurotol. 2002;23(3):393–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Fukuda T. The stepping test: two phases of the labyrinthine reflex. Acta Otolaryngol. 1959;50(2):95–108.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang YB, Wang WQ. Reliability of the Fukuda stepping test to determine the side of vestibular dysfunction. J Int Med Res. 2011;39(4):1432–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Abele TA, Besachio DA, Quigley EP, Gurgel RK, Shelton C, Harnsberger HR, et al. Diagnostic accuracy of screening MR imaging using unenhanced axial CISS and coronal T2WI for detection of small internal auditory canal lesions. AJNR Am J Neuroradiol. 2014;35(12):2366–70.PubMedCrossRefGoogle Scholar
  23. 23.
    Tos M, Thomsen J, editors. Synopsis on disagreements in measuring tumor size at the copenhagen acoustic neuroma conference. Proceeding of the first international conference on acoustic neuroma. Amsterdam: Kugler; 1992.Google Scholar
  24. 24.
    Koos WT, Day JD, Matula C, Levy DI. Neurotopographic considerations in the microsurgical treatment of small acoustic neurinomas. J Neurosurg. 1998;88(3):506–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Gardner G, Robertson JH. Hearing preservation in unilateral acoustic neuroma surgery. Ann Otol Rhinol Laryngol. 1988;97(1):55–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Meyer TA, Canty PA, Wilkinson EP, Hansen MR, Rubinstein JT, Gantz BJ. Small acoustic neuromas: surgical outcomes versus observation or radiation. Otol Neurotol. 2006;27(3):380–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Monsell E, Balkany T, Gates G, Goldenberg R, Meyerhoff W, House J. Committee on hearing and equilibrium guidelines for the evaluation of hearing preservation in acoustic neuroma (vestibular schwannoma). American Academy of Otolaryngology-Head and Neck Surgery Foundation, INC. Otolaryngol Head Neck Surg. 1995;113(3):179–80.CrossRefGoogle Scholar
  28. 28.
    Kileny PR, Zwolan TA. Diagnositc audiology. In: Flint PW, Haughey BH, Lund VJ, Niparko JK, Robbins KT, Thomas JR, et al., editors. Cumming’s otolaryngology head & neck surgery. 6th ed. Philadelphia, PA: Mosby; 2015. p. 2051–70.Google Scholar
  29. 29.
    Gurgel RK, Popelka GR, Oghalai JS, Blevins NH, Chang KW. Jackler RK. Is it valid to calculate the 3-kilohertz threshold by averaging 2 and 4 kilohertz? Otolaryngol Head Neck Surg. 2012;147(1):102–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Harner SG, Fabry DA, Beatty CW. Audiometric findings in patients with acoustic neuroma. Am J Otol. 2000;21(3):405–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Brackmann DE, Owens RM, Friedman RA, Hitselberger WE, De la Cruz A, House JW, et al. Prognostic factors for hearing preservation in vestibular schwannoma surgery. Am J Otol. 2000;21(3):417–24.CrossRefGoogle Scholar
  32. 32.
    Shelton C, Brackmann DE, House WF, Hitselberger WE. Acoustic tumor surgery. Prognostic factors in hearing conversation. Arch Otolaryngol Head Neck Surg. 1989;115(10):1213–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Slattery WH 3rd, Brackmann DE, Hitselberger W. Middle fossa approach for hearing preservation with acoustic neuromas. Am J Otol. 1997;18(5):596–601.PubMedGoogle Scholar
  34. 34.
    Dornhoffer JL, Helms J, Hoehmann DH. Hearing preservation in acoustic tumor surgery: results and prognostic factors. Laryngoscope. 1995;105(2):184–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Taylor RL, Kong J, Flanagan S, Pogson J, Croxson G, Pohl D, et al. Prevalence of vestibular dysfunction in patients with vestibular schwannoma using video head-impulses and vestibular-evoked potentials. J Neurol. 2015;262(5):1228–37.PubMedCrossRefGoogle Scholar
  36. 36.
    Prass RL. Iatrogenic facial nerve injury: the role of facial nerve monitoring. Otolaryngol Clin N Am. 1996;29(2):265–75.Google Scholar
  37. 37.
    Kizilay A, Aladag I, Cokkeser Y, Miman MC, Ozturan O, Gulhas N. Effects of partial neuromuscular blockade on facial nerve monitorization in otologic surgery. Acta Otolaryngol. 2003;123(2):321–4.PubMedCrossRefGoogle Scholar
  38. 38.
    Bernat I, Grayeli AB, Esquia G, Zhang Z, Kalamarides M, Sterkers O. Intraoperative electromyography and surgical observations as predictive factors of facial nerve outcome in vestibular schwannoma surgery. Otol Neurotol. 2010;31(2):306–12.PubMedCrossRefGoogle Scholar
  39. 39.
    Marin P, Pouliot D, Fradet G. Facial nerve outcome with a peroperative stimulation threshold under 0.05 mA. Laryngoscope. 2011;121(11):2295–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Lin VY, Houlden D, Bethune A, Nolan M, Pirouzmand F, Rowed D, et al. A novel method in predicting immediate postoperative facial nerve function post acoustic neuroma excision. Otol Neurotol. 2006;27(7):1017–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Sughrue ME, Kaur R, Kane AJ, Rutkowski MJ, Kaur G, Yang I, et al. The value of intraoperative facial nerve electromyography in predicting facial nerve function after vestibular schwannoma surgery. J Clin Neurosci. 2010;17(7):849–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Grayeli AB, Guindi S, Kalamarides M, El Garem H, Smail M, Rey A, et al. Four-channel electromyography of the facial nerve in vestibular schwannoma surgery: sensitivity and prognostic value for short-term facial function outcome. Otol Neurotol. 2005;26(1):114–20.PubMedCrossRefGoogle Scholar
  43. 43.
    Neff BA, Ting J, Dickinson SL, Welling DB. Facial nerve monitoring parameters as a predictor of postoperative facial nerve outcomes after vestibular schwannoma resection. Otol Neurotol. 2005;26(4):728–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Lalwani AK, Butt FY, Jackler RK, Pitts LH, Yingling CD. Facial nerve outcome after acoustic neuroma surgery: a study from the era of cranial nerve monitoring. Otolaryngol Head Neck Surg. 1994;111(5):561–70.PubMedCrossRefGoogle Scholar
  45. 45.
    Prasad S, Hirsch BE, Kamerer DB, Durrant J, Sekhar LN. Facial nerve function following cerebellopontine angle surgery: prognostic value of intraoperative thresholds. Am J Otol. 1993;14(4):330–3.PubMedGoogle Scholar
  46. 46.
    Isaacson B, Kileny PR, El-Kashlan H, Gadre AK. Intraoperative monitoring and facial nerve outcomes after vestibular schwannoma resection. Otol Neurotol. 2003;24(5):812–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Fenton JE, Chin RY, Fagan PA, Sterkers O, Sterkers JM. Predictive factors of long-term facial nerve function after vestibular schwannoma surgery. Otol Neurotol. 2002;23(3):388–92.PubMedCrossRefGoogle Scholar
  48. 48.
    Martin WH, Stecker MM. ASNM position statement: intraoperative monitoring of auditory evoked potentials. J Clin Monit Comput. 2008;22(1):75–85.PubMedCrossRefGoogle Scholar
  49. 49.
    Yingling CD, Ashram YA. Intraoperative monitoring of cranial nerves in skull base surgery. In: Jackler RK, Brackmann DE, editors. Neurotology. 2nd ed. Philadelphia, PA: Elsevier; 2005. p. 958–96.CrossRefGoogle Scholar
  50. 50.
    Ojemann RG, Levine RA, Montgomery WM, McGaffigan P. Use of intraoperative auditory evoked potentials to preserve hearing in unilateral acoustic neuroma removal. J Neurosurg. 1984;61(5):938–48.PubMedCrossRefGoogle Scholar
  51. 51.
    Levine RA, Ojemann RG, Montgomery WW, McGaffigan PM. Monitoring auditory evoked potentials during acoustic neuroma surgery. Insights into the mechanism of the hearing loss. Ann Otol Rhinol Laryngol. 1984;93(2 Pt 1):116–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Colletti V, Fiorino FG. Vulnerability of hearing function during acoustic neuroma surgery. Acta Otolaryngol. 1994;114(3):264–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Grundy BL, Jannetta PJ, Procopio PT, Lina A, Boston JR, Doyle E. Intraoperative monitoring of brain-stem auditory evoked potentials. J Neurosurg. 1982;57(5):674–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Battista RA, Wiet RJ, Paauwe L. Evaluation of three intraoperative auditory monitoring techniques in acoustic neuroma surgery. Am J Otol. 2000;21(2):244–8.PubMedCrossRefGoogle Scholar
  55. 55.
    James ML, Husain AM. Brainstem auditory evoked potential monitoring: when is change in wave V significant? Neurology. 2005;65(10):1551–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Mustain WD, al-Mefty O, Anand VK. Inconsistencies in the correlation between loss of brain stem auditory evoked response waves and postoperative deafness. J Clin Monit. 1992;8(3):231–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Harner SG, Harper CM, Beatty CW, Litchy WJ, Ebersold MJ. Far-field auditory brainstem response in neurotologic surgery. Am J Otol. 1996;17(1):150–3.PubMedGoogle Scholar
  58. 58.
    Browning S, Mohr G, Dufour JJ, Rappaport JM, Zeitouni A, Provencal C, et al. Hearing preservation in acoustic neuroma surgery. J Otolaryngol. 2001;30(5):307–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Yamakami I, Yoshinori H, Saeki N, Wada M, Oka N. Hearing preservation and intraoperative auditory brainstem response and cochlear nerve compound action potential monitoring in the removal of small acoustic neurinoma via the retrosigmoid approach. J Neurol Neurosurg Psychiatry. 2009;80(2):218–27.PubMedCrossRefGoogle Scholar
  60. 60.
    Piccirillo E, Hiraumi H, Hamada M, Russo A, De Stefano A, Sanna M. Intraoperative cochlear nerve monitoring in vestibular schwannoma surgery – does it really affect hearing outcome? Audiol Neurootol. 2008;13(1):58–64.PubMedCrossRefGoogle Scholar
  61. 61.
    Yingling CD, Gardi JN. Intraoperative monitoring of facial and cochlear nerves during acoustic neuroma surgery. 1992. Neurosurg Clin N Am. 2008;19(2):289–315, vii.PubMedCrossRefGoogle Scholar
  62. 62.
    Jewett DL, Romano MN, Williston JS. Human auditory evoked potentials: possible brain stem components detected on the scalp. Science (New York, NY). 1970;167(3924):1517–8.CrossRefGoogle Scholar
  63. 63.
    Jewett DL. Volume-conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroencephalogr Clin Neurophysiol. 1970;28(6):609–18.PubMedCrossRefGoogle Scholar
  64. 64.
    Jewett DL, Williston JS. Auditory-evoked far fields averaged from the scalp of humans. Brain. 1971;94(4):681–96.PubMedCrossRefGoogle Scholar
  65. 65.
    Kileny PR, Edwards BM. Objective measure of auditory function. In: Jackler RK, Brackmann DE, editors. Textbook of Neurotology. 2nd ed. St Louis: Mosby-Year Book; 2004. p. 287–305.CrossRefGoogle Scholar
  66. 66.
    Slavit DH, Harner SG, Harper CM Jr, Beatty CW. Auditory monitoring during acoustic neuroma removal. Arch Otolaryngol. 1991;117(10):1153–7.CrossRefGoogle Scholar
  67. 67.
    Samii M, Gerganov V, Samii A. Improved preservation of hearing and facial nerve function in vestibular schwannoma surgery via the retrosigmoid approach in a series of 200 patients. J Neurosurg. 2006;105(4):527–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Neu M, Strauss C, Romstock J, Bischoff B, Fahlbusch R. The prognostic value of intraoperative BAEP patterns in acoustic neurinoma surgery. Clin Neurophysiol. 1999;110(11):1935–41.PubMedCrossRefGoogle Scholar
  69. 69.
    Gouveris H, Mann W. Association between surgical steps and intraoperative auditory brainstem response and electrocochleography waveforms during hearing preservation vestibular schwannoma surgery. Eur Arch Otorhinolaryngol. 2009;266(2):225–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Klem GH, Luders HO, Jasper HH, Elger C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3–6.PubMedGoogle Scholar
  71. 71.
    Dinh CT, Ojo R, Yilmazer R, et al. Intraoperative neurophysiologicial monitoring. In: Brackmann D, Shelton C, Arriaga M, editors. Otologic surgery. 4th ed. Philadelphia, PA: Elsevier; 2016. p. 678–89.Google Scholar
  72. 72.
    Cueva RA, Morris GF, Prioleau GR. Direct cochlear nerve monitoring: first report on a new atraumatic, self-retaining electrode. Am J Otol. 1998;19(2):202–7.PubMedGoogle Scholar
  73. 73.
    Danner C, Mastrodimos B. Cueva RA. A comparison of direct eighth nerve monitoring and auditory brainstem response in hearing preservation surgery for vestibular schwannoma. Otol Neurotol. 2004;25(5):826–32.PubMedCrossRefGoogle Scholar
  74. 74.
    Harper CM, Harner SG, Slavit DH, Litchy WJ, Daube JR, Beatty CW, et al. Effect of BAEP monitoring on hearing preservation during acoustic neuroma resection. Neurology. 1992;42(8):1551–3.PubMedCrossRefGoogle Scholar
  75. 75.
    Jackson LE, Roberson JB Jr. Acoustic neuroma surgery: use of cochlear nerve action potential monitoring for hearing preservation. Am J Otol. 2000;21(2):249–59.PubMedCrossRefGoogle Scholar
  76. 76.
    Roberson J, Senne A, Brackmann D, Hitselberger WE, Saunders J. Direct cochlear nerve action potentials as an aid to hearing preservation in middle fossa acoustic neuroma resection. Am J Otol. 1996;17(4):653–7.PubMedGoogle Scholar
  77. 77.
    Silverstein H, McDaniel AB, Norrell H. Hearing preservation after acoustic neuroma surgery using intraoperative direct eighth cranial nerve monitoring. Am J Otol. 1985;Suppl:99–106.PubMedGoogle Scholar
  78. 78.
    Schramm J, Mokrusch T, Fahlbusch R, Hochstetter A. Detailed analysis of intraoperative changes monitoring brain stem acoustic evoked potentials. Neurosurgery. 1988;22(4):694–702.PubMedCrossRefGoogle Scholar
  79. 79.
    Levine RA, Montgomery WW, Ojemann RG. Evoked potential detection of hearing loss during acoustic neuroma surgery. Neurology. 1978;28:339.CrossRefGoogle Scholar
  80. 80.
    Roberson JB Jr, Jackson LE, McAuley JR. Acoustic neuroma surgery: absent auditory brainstem response does not contraindicate attempted hearing preservation. Laryngoscope. 1999;109(6):904–10.PubMedCrossRefGoogle Scholar
  81. 81.
    Colletti V, Bricolo A, Fiorino FG, Bruni L. Changes in directly recorded cochlear nerve compound action potentials during acoustic tumor surgery. Skull Base Surg. 1994;4(1):1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Colletti V, Fiorino FG, Carner M, Cumer G, Giarbini N, Sacchetto L. Intraoperative monitoring for hearing preservation and restoration in acoustic neuroma surgery. Skull Base Surg. 2000;10(4):187–95.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Colletti V, Fiorino FG, Mocella S, Policante Z. ECochG, CNAP and ABR monitoring during vestibular schwannoma surgery. Audiology. 1998;37(1):27–37.PubMedCrossRefGoogle Scholar
  84. 84.
    Nedzelski JM, Chiong CM, Cashman MZ, Stanton SG, Rowed DW. Hearing preservation in acoustic neuroma surgery: value of monitoring cochlear nerve action potentials. Otolaryngol Head Neck Surg. 1994;111(6):703–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Legatt AD. Mechanisms of intraoperative brainstem auditory evoked potential changes. J Clin Neurophysiol. 2002;19(5):396–408.PubMedCrossRefGoogle Scholar
  86. 86.
    Radtke RA, Erwin CW, Wilkins RH. Intraoperative brainstem auditory evoked potentials: significant decrease in postoperative morbidity. Neurology. 1989;39(2 Pt 1):187–91.PubMedCrossRefGoogle Scholar
  87. 87.
    Colletti V, Fiorino FG. Advances in monitoring of seventh and eighth cranial nerve function during posterior fossa surgery. Am J Otol. 1998;19(4):503–12.PubMedGoogle Scholar
  88. 88.
    Fischer G, Fischer C, Remond J. Hearing preservation in acoustic neurinoma surgery. J Neurosurg. 1992;76(6):910–7.PubMedCrossRefGoogle Scholar
  89. 89.
    ZappiaJj WRJ, O'Connor CA, Martone L. Intraoperative auditory monitoring in acoustic neuroma surgery. Otolaryngol Head Neck Surg. 1996;115(1):98–106.PubMedCrossRefGoogle Scholar
  90. 90.
    Watanabe E, Schramm J, Strauss C, Fahlbusch R. Neurophysiologic monitoring in posterior fossa surgery. II. BAEP-waves I and V and preservation of hearing. Acta Neurochir. 1989;98(3–4):118–28.PubMedCrossRefGoogle Scholar
  91. 91.
    Kveton JF. The efficacy of brainstem auditory evoked potentials in acoustic tumor surgery. Laryngoscope. 1990;100(11):1171–3.PubMedCrossRefGoogle Scholar
  92. 92.
    Cohen NL, Lewis WS, Ransohoff J. Hearing preservation in cerebellopontine angle tumor surgery: the NYU experience 1974-1991. Am J Otol. 1993;14(5):423–33.PubMedGoogle Scholar
  93. 93.
    Matthies C, Samii M. Management of vestibular schwannomas (acoustic neuromas): the value of neurophysiology for intraoperative monitoring of auditory function in 200 cases. Neurosurgery 1997;40(3):459–66. discussion 66–8.PubMedGoogle Scholar
  94. 94.
    Stechison MT. Vagus nerve monitoring: percutaneous versus vocal fold electrode recording. Am J Otol. 1995;16(5):703–6.PubMedGoogle Scholar
  95. 95.
    Moller A. Intraoperative monitoring of evoked potentials: An update. In: Wilkins RH, Rengachary SS, editors. Neurosurgery update i diagnosis, operative technique, and neuro-oncology. New York, NY: McGraw-Hill; 1990. p. 169–76.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sima Sayyahmelli
    • 1
  • Lucas Leonhard
    • 2
  • Burak Ozaydin
    • 1
  • Joseph P. Roche
    • 3
    Email author
  1. 1.Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  2. 2.Department of Surgery, Division of Otolaryngology-Head and Neck SurgeryUniversity of Wisconsin-Madison School of Medicine and Public HealthMadisonUSA
  3. 3.Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Section of Otology/NeurotologyUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA

Personalised recommendations