Advertisement

Role of Prostate MRI in the Setting of Active Surveillance for Prostate Cancer

  • Samuel J. Galgano
  • Zachary A. Glaser
  • Kristin K. Porter
  • Soroush Rais-BahramiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1126)

Abstract

Please check and confirm if the affiliations are presented correctly. Please check the hierarchy of the section headings and confirm if correct.

References

  1. 1.
    Etzioni R, Gulati R, Cooperberg MR, Penson DM, Weiss NS, Thompson IM (2013) Limitations of basing screening policies on screening trials: The US Preventive Services Task Force and prostate cancer screening. Med Care 51(4):295–300PubMedPubMedCentralGoogle Scholar
  2. 2.
    Jemal A, Ward EM, Johnson CJ et al (2017) Annual report to the nation on the status of cancer, 1975–2014, featuring survival. J Natl Cancer Inst 2017:109(9)Google Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30Google Scholar
  4. 4.
    Ritch CR, Graves AJ, Keegan KA et al (2015) Increasing use of observation among men at low risk for prostate cancer mortality. J Urol 193(3):801–806PubMedGoogle Scholar
  5. 5.
    Albertsen PC, Hanley JA, Fine J (2005) 20-Year outcomes following conservative management of clinically localized prostate cancer. JAMA 293(17):2095–2101PubMedGoogle Scholar
  6. 6.
    Penson DF (2012) Factors influencing patients’ acceptance and adherence to active surveillance. J Natl Cancer Inst Monogr 2012(45):207–212PubMedPubMedCentralGoogle Scholar
  7. 7.
    Resnick MJ, Koyama T, Fan KH et al (2013) Long-term functional outcomes after treatment for localized prostate cancer. N Engl J Med 368(5):436–445PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gleason DF (1966) Classification of prostatic carcinomas. Cancer Chemother Rep 50(3):125–128PubMedGoogle Scholar
  9. 9.
    Epstein JI, Allsbrook WC Jr, Amin MB, Egevad LL, Committee IG (2005) The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol 29(9):1228–1242PubMedGoogle Scholar
  10. 10.
    Epstein JI, Egevad L, Amin MB et al (2016) The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol 40(2):244–252Google Scholar
  11. 11.
    Mellinger GT, Gleason D, Bailar J 3rd. (1967) The histology and prognosis of prostatic cancer. J Urol 97(2):331–337PubMedGoogle Scholar
  12. 12.
    Gleason DF, Mellinger GT (1974) Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 111(1):58–64PubMedGoogle Scholar
  13. 13.
    Epstein JI, Zelefsky MJ, Sjoberg DD et al (2016) A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol 69(3):428–435PubMedGoogle Scholar
  14. 14.
    Huang Y, Isharwal S, Haese A et al (2011) Prediction of patient-specific risk and percentile cohort risk of pathological stage outcome using continuous prostate-specific antigen measurement, clinical stage and biopsy Gleason score. BJU Int 107(10):1562–1569PubMedGoogle Scholar
  15. 15.
    Makarov DV, Trock BJ, Humphreys EB et al (2007) Updated nomogram to predict pathologic stage of prostate cancer given prostate-specific antigen level, clinical stage, and biopsy Gleason score (Partin tables) based on cases from 2000 to 2005. Urology 69(6):1095–1101PubMedPubMedCentralGoogle Scholar
  16. 16.
    Briganti A, Chun FK, Salonia A et al (2006) Validation of a nomogram predicting the probability of lymph node invasion among patients undergoing radical prostatectomy and an extended pelvic lymphadenectomy. Eur Urol 49(6):1019–1026 discussion 1026–1017PubMedGoogle Scholar
  17. 17.
    Briganti A, Larcher A, Abdollah F et al (2012) Updated nomogram predicting lymph node invasion in patients with prostate cancer undergoing extended pelvic lymph node dissection: the essential importance of percentage of positive cores. Eur Urol 61(3):480–487PubMedGoogle Scholar
  18. 18.
    Cagiannos I, Karakiewicz P, Eastham JA et al (2003) A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol 170(5):1798–1803PubMedGoogle Scholar
  19. 19.
    Cimino S, Reale G, Castelli T et al (2017) Comparison between Briganti, Partin and MSKCC tools in predicting positive lymph nodes in prostate cancer: a systematic review and meta-analysis. Scand J Urol 51(5):345–350PubMedGoogle Scholar
  20. 20.
    Jones GW (1992) Prospective, conservative management of localized prostate cancer. Cancer 70(1 Suppl):307–310PubMedGoogle Scholar
  21. 21.
    Gerber GS (1994) Conservative approach to the management of prostate cancer. A critical review. Eur Urol 26(4):271–275PubMedGoogle Scholar
  22. 22.
    Bill-Axelson A, Holmberg L, Garmo H et al (2014) Radical prostatectomy or watchful waiting in early prostate cancer. N Engl J Med 370(10):932–942PubMedPubMedCentralGoogle Scholar
  23. 23.
    Wilt TJ, Brawer MK, Jones KM et al (2012) Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 367(3):203–213PubMedPubMedCentralGoogle Scholar
  24. 24.
    Wilt TJ, Jones KM, Barry MJ et al (2017) Follow-up of prostatectomy versus observation for early prostate cancer. N Engl J Med 377(2):132–142Google Scholar
  25. 25.
    Potosky AL, Davis WW, Hoffman RM et al (2004) Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: the prostate cancer outcomes study. J Natl Cancer Inst 96(18):1358–1367PubMedGoogle Scholar
  26. 26.
    Bul M, Zhu X, Valdagni R et al (2013) Active surveillance for low-risk prostate cancer worldwide: the PRIAS study. Eur Urol 63(4):597–603PubMedGoogle Scholar
  27. 27.
    Dall'Era MA, Klotz L (2017) Active surveillance for intermediate-risk prostate cancer. Prostate Cancer Prostatic Dis 20(1):1–6PubMedGoogle Scholar
  28. 28.
    Savdie R, Aning J, So AI, Black PC, Gleave ME, Goldenberg SL (2017) Identifying intermediate-risk candidates for active surveillance of prostate cancer. Urol Oncol 35(10):605 e601–605 e608Google Scholar
  29. 29.
    Lee H, Lee IJ, Byun SS, Lee SE, Hong SK (2017) Favorable Gleason 3 + 4 prostate cancer shows comparable outcomes with gleason 3 + 3 prostate cancer: implications for the expansion of selection criteria for active surveillance. Clin Genitourin Cancer 15(6):e1117–e1122PubMedGoogle Scholar
  30. 30.
    Nyame YA, Almassi N, Haywood SC et al (2017) Intermediate-term outcomes for men with very low/low and intermediate/high risk prostate cancer managed by active surveillance. J Urol 198(3):591–599PubMedGoogle Scholar
  31. 31.
    Network NCC (2016) NCCN guidelines version 3.2016 prostate cancerGoogle Scholar
  32. 32.
    Epstein JI, Walsh PC, Carmichael M, Brendler CB (1994) Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 271(5):368–374PubMedGoogle Scholar
  33. 33.
    Stamey TA, Freiha FS, McNeal JE, Redwine EA, Whittemore AS, Schmid HP (1993) Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer 71(3 Suppl):933–938PubMedGoogle Scholar
  34. 34.
    D'Amico AV, Whittington R, Malkowicz SB et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280(11):969–974PubMedGoogle Scholar
  35. 35.
    Cadeddu J (2017) Clinically localized prostate cancer: AUA/ASTRO/SUO guideline very low-/low-risk disease. Paper presented at 2017 AUA national meeting; Boston, MAGoogle Scholar
  36. 36.
    Tosoian JJ, Trock BJ, Landis P et al (2011) Active surveillance program for prostate cancer: an update of the Johns Hopkins experience. J Clin Oncol 29(16):2185–2190PubMedGoogle Scholar
  37. 37.
    Porten SP, Whitson JM, Cowan JE et al (2011) Changes in prostate cancer grade on serial biopsy in men undergoing active surveillance. J Clin Oncol 29(20):2795–2800PubMedGoogle Scholar
  38. 38.
    Selvadurai ED, Singhera M, Thomas K et al (2013) Medium-term outcomes of active surveillance for localised prostate cancer. Eur Urol 64(6):981–987PubMedGoogle Scholar
  39. 39.
    Cooperberg MR, Broering JM, Carroll PR (2010) Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol 28(7):1117–1123PubMedPubMedCentralGoogle Scholar
  40. 40.
    van den Bergh RC, Vasarainen H, van der Poel HG et al (2010) Short-term outcomes of the prospective multicentre ‘prostate cancer research international: active surveillance’ study. BJU Int 105(7):956–962PubMedGoogle Scholar
  41. 41.
    Conti SL, Dall'era M, Fradet V, Cowan JE, Simko J, Carroll PR (2009) Pathological outcomes of candidates for active surveillance of prostate cancer. J Urol 181(4):1628–1633 discussion 1633–1624PubMedGoogle Scholar
  42. 42.
    Suardi N, Briganti A, Gallina A et al (2010) Testing the most stringent criteria for selection of candidates for active surveillance in patients with low-risk prostate cancer. BJU Int 105(11):1548–1552PubMedGoogle Scholar
  43. 43.
    Alan J, Wein LRK, Partin AW, Peters CA (2016) Campbell-Walsh urology, vol 11. Elsevier, Philadelphia, PAGoogle Scholar
  44. 44.
    Sanda MG, Cadeddu JA, Kirkby E et al (2017) Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J Urol pii:S0022-5347(17)78003-2Google Scholar
  45. 45.
    Mohler JL, Armstrong AJ, Bahnson RR et al (2016) Prostate cancer, version 1.2016. J Natl Compr Cancer Netw 14(1):19–30Google Scholar
  46. 46.
    Dall'Era MA, Albertsen PC, Bangma C et al (2012) Active surveillance for prostate cancer: a systematic review of the literature. Eur Urol 62(6):976–983PubMedGoogle Scholar
  47. 47.
    Ploussard G, Nicolaiew N, Marchand C et al (2014) Prospective evaluation of an extended 21-core biopsy scheme as initial prostate cancer diagnostic strategy. Eur Urol 65(1):154–161PubMedGoogle Scholar
  48. 48.
    Linder BJ, Frank I, Umbreit EC et al (2013) Standard and saturation transrectal prostate biopsy techniques are equally accurate among prostate cancer active surveillance candidates. Int J Urol 20(9):860–864PubMedGoogle Scholar
  49. 49.
    Taira AV, Merrick GS, Bennett A et al (2013) Transperineal template-guided mapping biopsy as a staging procedure to select patients best suited for active surveillance. Am J Clin Oncol 36(2):116–120PubMedGoogle Scholar
  50. 50.
    Onik G, Miessau M, Bostwick DG (2009) Three-dimensional prostate mapping biopsy has a potentially significant impact on prostate cancer management. J Clin Oncol 27(26):4321–4326PubMedGoogle Scholar
  51. 51.
    Lin DW, Newcomb LF, Brown MD et al (2017) Evaluating the four Kallikrein panel of the 4Kscore for prediction of high-grade prostate cancer in men in the canary prostate active surveillance study. Eur Urol 72(3):448–454PubMedGoogle Scholar
  52. 52.
    Eure G, Germany R, Given R et al (2017) Use of a 17-gene prognostic assay in contemporary urologic practice: results of an interim analysis in an observational cohort. Urology 107:67–75PubMedGoogle Scholar
  53. 53.
    Arsov C, Jankowiak F, Hiester A et al (2014) Prognostic value of a cell-cycle progression score in men with prostate cancer managed with active surveillance after MRI-guided prostate biopsy—a pilot study. Anticancer Res 34(5):2459–2466PubMedGoogle Scholar
  54. 54.
    Tosoian JJ, JohnBull E, Trock BJ et al (2013) Pathological outcomes in men with low risk and very low risk prostate cancer: implications on the practice of active surveillance. J Urol 190(4):1218–1222PubMedPubMedCentralGoogle Scholar
  55. 55.
    Umbehr MH, Platz EA, Peskoe SB et al (2014) Serum prostate-specific antigen (PSA) concentration is positively associated with rate of disease reclassification on subsequent active surveillance prostate biopsy in men with low PSA density. BJU Int 113(4):561–567PubMedGoogle Scholar
  56. 56.
    Ross AE, Loeb S, Landis P et al (2010) Prostate-specific antigen kinetics during follow-up are an unreliable trigger for intervention in a prostate cancer surveillance program. J Clin Oncol 28(17):2810–2816PubMedGoogle Scholar
  57. 57.
    Dall'Era MA, Konety BR, Cowan JE et al (2008) Active surveillance for the management of prostate cancer in a contemporary cohort. Cancer 112(12):2664–2670PubMedGoogle Scholar
  58. 58.
    Xia J, Trock BJ, Cooperberg MR et al (2012) Prostate cancer mortality following active surveillance versus immediate radical prostatectomy. Clin Cancer Res 18(19):5471–5478PubMedPubMedCentralGoogle Scholar
  59. 59.
    Klotz L (2012) Active surveillance: the Canadian experience with an “inclusive approach”. J Natl Cancer Inst Monogr 2012(45):234–241PubMedPubMedCentralGoogle Scholar
  60. 60.
    Bokhorst LP, Valdagni R, Rannikko A et al (2016) A decade of active surveillance in the PRIAS study: an update and evaluation of the criteria used to recommend a switch to active treatment. Eur Urol 70(6):954–960PubMedPubMedCentralGoogle Scholar
  61. 61.
    Oberlin DT, Casalino DD, Miller FH, Meeks JJ (2017) Dramatic increase in the utilization of multiparametric magnetic resonance imaging for detection and management of prostate cancer. Abdom Radiol (NY) 42(4):1255–1258Google Scholar
  62. 62.
    Almeida GL, Petralia G, Ferro M et al (2016) Role of multi-parametric magnetic resonance image and PIRADS score in patients with prostate cancer eligible for active surveillance according PRIAS criteria. Urol Int 96(4):459–469PubMedGoogle Scholar
  63. 63.
    Glaser ZA, Gordetsky JB, Porter KK, Varambally S, Rais-Bahrami S (2017) Prostate cancer imaging and biomarkers guiding safe selection of active surveillance. Front Oncol 7:256PubMedPubMedCentralGoogle Scholar
  64. 64.
    Grey AD, Chana MS, Popert R, Wolfe K, Liyanage SH, Acher PL (2015) Diagnostic accuracy of magnetic resonance imaging (MRI) prostate imaging reporting and data system (PI-RADS) scoring in a transperineal prostate biopsy setting. BJU Int 115(5):728–735PubMedGoogle Scholar
  65. 65.
    Yim JH, Kim CK, Kim JH (2017) Clinically insignificant prostate cancer suitable for active surveillance according to prostate cancer research international: active surveillance criteria: utility of PI-RADS v2. J Magn Reson Imaging 47(4):1072–1079PubMedGoogle Scholar
  66. 66.
    Porpiglia F, Cantiello F, De Luca S et al (2016) Multiparametric magnetic resonance imaging and active surveillance: how to better select insignificant prostate cancer? Int J Urol 23(9):752–757PubMedGoogle Scholar
  67. 67.
    Hoeks CM, Somford DM, van Oort IM et al (2014) Value of 3-T multiparametric magnetic resonance imaging and magnetic resonance-guided biopsy for early risk restratification in active surveillance of low-risk prostate cancer: a prospective multicenter cohort study. Investig Radiol 49(3):165–172Google Scholar
  68. 68.
    Stamatakis L, Siddiqui MM, Nix JW et al (2013) Accuracy of multiparametric magnetic resonance imaging in confirming eligibility for active surveillance for men with prostate cancer. Cancer 119(18):3359–3366PubMedGoogle Scholar
  69. 69.
    Lai WS, Gordetsky JB, Thomas JV, Nix JW, Rais-Bahrami S (2017) Factors predicting prostate cancer upgrading on magnetic resonance imaging-targeted biopsy in an active surveillance population. Cancer 123(11):1941–1948PubMedGoogle Scholar
  70. 70.
    Lim CS, McInnes MDF, Flood TA et al (2017) Prostate imaging reporting and data system, version 2, assessment categories and pathologic outcomes in patients with Gleason score 3 + 4 = 7 prostate cancer diagnosed at biopsy. AJR Am J Roentgenol 208(5):1037–1044PubMedGoogle Scholar
  71. 71.
    Nougaret S, Robertson N, Golia Pernicka J et al (2017) The performance of PI-RADSv2 and quantitative apparent diffusion coefficient for predicting confirmatory prostate biopsy findings in patients considered for active surveillance of prostate cancer. Abdom Radiol (NY) 42(7):1968–1974Google Scholar
  72. 72.
    Tan WP, Mazzone A, Shors S et al (2017) Central zone lesions on magnetic resonance imaging: should we be concerned? Urol Oncol 35(1):31 e37–31 e12Google Scholar
  73. 73.
    Panebianco V, Barchetti F, Sciarra A et al (2015) Multiparametric magnetic resonance imaging vs. standard care in men being evaluated for prostate cancer: a randomized study. Urol Oncol 33(1):17 e11–17 e17Google Scholar
  74. 74.
    Da Rosa MR, Milot L, Sugar L et al (2015) A prospective comparison of MRI-US fused targeted biopsy versus systematic ultrasound-guided biopsy for detecting clinically significant prostate cancer in patients on active surveillance. J Magn Reson Imaging 41(1):220–225PubMedGoogle Scholar
  75. 75.
    Nassiri N, Margolis DJ, Natarajan S et al (2017) Targeted biopsy to detect Gleason score upgrading during active surveillance for men with low versus intermediate risk prostate cancer. J Urol 197(3 Pt 1):632–639PubMedGoogle Scholar
  76. 76.
    Abdi H, Pourmalek F, Zargar H et al (2015) Multiparametric magnetic resonance imaging enhances detection of significant tumor in patients on active surveillance for prostate cancer. Urology 85(2):423–428PubMedGoogle Scholar
  77. 77.
    Weaver JK, Kim EH, Vetter JM, Fowler KJ, Siegel CL, Andriole GL (2016) Presence of magnetic resonance imaging suspicious lesion predicts Gleason 7 or greater prostate cancer in biopsy-naive patients. Urology 88:119–124PubMedGoogle Scholar
  78. 78.
    Marliere F, Puech P, Benkirane A et al (2014) The role of MRI-targeted and confirmatory biopsies for cancer upstaging at selection in patients considered for active surveillance for clinically low-risk prostate cancer. World J Urol 32(4):951–958PubMedGoogle Scholar
  79. 79.
    Frye TP, George AK, Kilchevsky A et al (2017) Magnetic resonance imaging-transrectal ultrasound guided fusion biopsy to detect progression in patients with existing lesions on active surveillance for low and intermediate risk prostate cancer. J Urol 197(3 Pt 1):640–646PubMedGoogle Scholar
  80. 80.
    Siddiqui MM, Truong H, Rais-Bahrami S et al (2015) Clinical implications of a multiparametric magnetic resonance imaging based nomogram applied to prostate cancer active surveillance. J Urol 193(6):1943–1949PubMedPubMedCentralGoogle Scholar
  81. 81.
    Felker ER, Wu J, Natarajan S et al (2016) Serial magnetic resonance imaging in active surveillance of prostate cancer: incremental value. J Urol 195(5):1421–1427PubMedGoogle Scholar
  82. 82.
    Rais-Bahrami S, Turkbey B, Rastinehad AR et al (2014) Natural history of small index lesions suspicious for prostate cancer on multiparametric MRI: recommendations for interval imaging follow-up. Diagn Interv Rad (Ankara) 20(4):293–298Google Scholar
  83. 83.
    Moore CM, Giganti F, Albertsen P et al (2017) Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the PRECISE recommendations—a report of a European School of Oncology Task Force. Eur Urol 71(4):648–655PubMedGoogle Scholar
  84. 84.
    Walton Diaz A, Shakir NA, George AK et al (2015) Use of serial multiparametric magnetic resonance imaging in the management of patients with prostate cancer on active surveillance. Urol Oncol 33(5):202.e201–202.e207Google Scholar
  85. 85.
    Weinreb JC, Barentsz JO, Choyke PL et al (2016) PI-RADS prostate imaging – reporting and data system: 2015, version 2. Eur Urol 69(1):16–40Google Scholar
  86. 86.
    Scheltema MJ, Tay KJ, Postema AW et al (2017) Utilization of multiparametric prostate magnetic resonance imaging in clinical practice and focal therapy: report from a Delphi consensus project. World J Urol 35(5):695–701PubMedGoogle Scholar
  87. 87.
    Arumainayagam N, Ahmed HU, Moore CM et al (2013) Multiparametric MR imaging for detection of clinically significant prostate cancer: a validation cohort study with transperineal template prostate mapping as the reference standard. Radiology 268(3):761–769PubMedGoogle Scholar
  88. 88.
    Russo F, Regge D, Armando E et al (2016) Detection of prostate cancer index lesions with multiparametric magnetic resonance imaging (mp-MRI) using whole-mount histological sections as the reference standard. BJU Int 118(1):84–94PubMedGoogle Scholar
  89. 89.
    Rais-Bahrami S, Siddiqui MM, Turkbey B et al (2013) Utility of multiparametric magnetic resonance imaging suspicion levels for detecting prostate cancer. J Urol 190(5):1721–1727PubMedPubMedCentralGoogle Scholar
  90. 90.
    Rais-Bahrami S, Siddiqui MM, Vourganti S et al (2015) Diagnostic value of biparametric magnetic resonance imaging (MRI) as an adjunct to prostate-specific antigen (PSA)-based detection of prostate cancer in men without prior biopsies. BJU Int 115(3):381–388PubMedGoogle Scholar
  91. 91.
    Moore CM, Petrides N, Emberton M (2014) Can MRI replace serial biopsies in men on active surveillance for prostate cancer? Curr Opin Urol 24(3):280–287PubMedGoogle Scholar
  92. 92.
    Giganti F, Moore CM, Robertson NL et al (2017) MRI findings in men on active surveillance for prostate cancer: does dutasteride make MRI visible lesions less conspicuous? Results from a placebo-controlled, randomised clinical trial. Eur Radiol 27(11):4767–4774PubMedPubMedCentralGoogle Scholar
  93. 93.
    Siddiqui MM, Rais-Bahrami S, Turkbey B et al (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313(4):390–397PubMedPubMedCentralGoogle Scholar
  94. 94.
    Nahar B, Katims A, Barboza MP et al (2017) Reclassification rates of patients eligible for active surveillance after the addition of magnetic resonance imaging-ultrasound fusion biopsy: an analysis of 7 widely used eligibility criteria. Urology 110:134–139PubMedGoogle Scholar
  95. 95.
    Sonn GA, Filson CP, Chang E et al (2014) Initial experience with electronic tracking of specific tumor sites in men undergoing active surveillance of prostate cancer. Urol Oncol 32(7):952–957PubMedPubMedCentralGoogle Scholar
  96. 96.
    Palapattu GS, Salami SS, Cani AK et al (2017) Molecular profiling to determine clonality of serial magnetic resonance imaging/ultrasound fusion biopsies from men on active surveillance for low-risk prostate cancer. Clin Cancer Res 23(4):985–991PubMedGoogle Scholar
  97. 97.
    Okoro C, George AK, Siddiqui MM et al (2015) Magnetic resonance imaging/transrectal ultrasonography fusion prostate biopsy significantly outperforms systematic 12-core biopsy for prediction of total magnetic resonance imaging tumor volume in active surveillance patients. J Endourol 29(10):1115–1121PubMedPubMedCentralGoogle Scholar
  98. 98.
    Ristau BT, Chen DYT, Ellis J et al (2017) Defining novel and practical metrics to assess the deliverables of multiparametric magnetic resonance imaging/ultrasound fusion prostate biopsy. J Urol 199(4):969–975PubMedGoogle Scholar
  99. 99.
    Chang E, Jones TA, Natarajan S et al (2017) Value of tracking biopsy in men undergoing active surveillance of prostate cancer. J Urol 199(1):98–105PubMedPubMedCentralGoogle Scholar
  100. 100.
    Eggener SE, Mueller A, Berglund RK et al (2013) A multi-institutional evaluation of active surveillance for low risk prostate cancer. J Urol 189(1 Suppl):S19–S25 discussion S25PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Samuel J. Galgano
    • 1
  • Zachary A. Glaser
    • 2
  • Kristin K. Porter
    • 1
  • Soroush Rais-Bahrami
    • 1
    • 2
    Email author
  1. 1.Department of RadiologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of UrologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations