Advertisement

The Impact of Coevolution and Abstention on the Emergence of Cooperation

  • Marcos CardinotEmail author
  • Colm O’Riordan
  • Josephine Griffith
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 792)

Abstract

This paper explores the Coevolutionary Optional Prisoner’s Dilemma (COPD) game, which is a simple model to coevolve game strategy and link weights of agents playing the Optional Prisoner’s Dilemma game, which is also known as the Prisoner’s Dilemma with voluntary participation. A number of Monte Carlo simulations are performed to investigate the impacts of the COPD game on the emergence of cooperation. Results show that the coevolutionary rules enable cooperators to survive and even dominate, with the presence of abstainers in the population playing a key role in the protection of cooperators against exploitation from defectors. We observe that in adverse conditions such as when the initial population of abstainers is too scarce/abundant, or when the temptation to defect is very high, cooperation has no chance of emerging. However, when the simple coevolutionary rules are applied, cooperators flourish.

Keywords

Optional Prisoner’s Dilemma game Voluntary participation Evolutionary game theory 

Notes

Acknowledgements

This work was supported by the National Council for Scientific and Technological Development (CNPq-Brazil). Grant number: 234913/20142.

References

  1. 1.
    Batali, J., Kitcher, P.: Evolution of altruism in optional and compulsory games. J. Theor. Biol. 175(2), 161–171 (1995)CrossRefGoogle Scholar
  2. 2.
    Cao, L., Ohtsuki, H., Wang, B., Aihara, K.: Evolution of cooperation on adaptively weighted networks. J. Theor. Biol. 272(1), 8–15 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cardinot, M., Gibbons, M., O’Riordan, C., Griffith, J.: Simulation of an optional strategy in the prisoner’s dilemma in spatial and non-spatial environments. From Animals to Animats 14 (SAB 2016), pp. 145–156. Springer International Publishing, Cham (2016)Google Scholar
  4. 4.
    Cardinot, M., Griffith, J., O’Riordan, C.: Cyclic dominance in the spatial coevolutionary optional prisoner’s dilemma game. In: Greene, D., Namee, B.M., Ross, R. (eds.) Artificial Intelligence and Cognitive Science 2016. CEUR Workshop Proceedings, vol. 1751, pp. 33–44. Dublin, Ireland (2016)Google Scholar
  5. 5.
    Cardinot, M., O’Riordan, C., Griffith, J.: The optional prisoner’s dilemma in a spatial environment: coevolving game strategy and link weights. In: Proceedings of the 8th International Joint Conference on Computational Intelligence (IJCCI 2016), pp. 86–93 (2016)Google Scholar
  6. 6.
    Chen, X., Wang, L.: Promotion of cooperation induced by appropriate payoff aspirations in a small-world networked game. Phys. Rev. E 77, 017103 (2008)Google Scholar
  7. 7.
    Fisher, L.: Rock, Paper, Scissors: Game Theory in Everyday Life. Basic Books, New York (2008)Google Scholar
  8. 8.
    Fu, F., Liu, L.H., Wang, L.: Evolutionary prisoner’s dilemma on heterogeneous Newman-Watts small-world network. Eur. Phys. J. B 56(4), 367–372 (2007)CrossRefGoogle Scholar
  9. 9.
    Ghang, W., Nowak, M.A.: Indirect reciprocity with optional interactions. J. Theor. Biol. 365, 1–11 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gómez-Gardeñes, J., Romance, M., Criado, R., Vilone, D., Sánchez, A.: Evolutionary games defined at the network mesoscale: the public goods game. Chaos 21(1), 016113 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hauert, C., Traulsen, A., Brandt, H., Nowak, M.A.: Public goods with punishment and abstaining in finite and infinite populations. Biol. Theory 3(2), 114–122 (2008)CrossRefGoogle Scholar
  12. 12.
    Huang, K., Zheng, X., Li, Z., Yang, Y.: Understanding cooperative behavior based on the coevolution of game strategy and link weight. Sci. Rep. 5, 14783 (2015)Google Scholar
  13. 13.
    Jeong, H.C., Oh, S.Y., Allen, B., Nowak, M.A.: Optional games on cycles and complete graphs. J. Theor. Biol. 356, 98–112 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359(6398), 826–829 (1992)CrossRefGoogle Scholar
  15. 15.
    Olejarz, J., Ghang, W., Nowak, M.A.: Indirect reciprocity with optional interactions and private information. Games 6(4), 438–457 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Perc, M., Szolnoki, A.: Coevolutionary games - a mini review. Biosystems 99(2), 109–125 (2010)CrossRefGoogle Scholar
  17. 17.
    Szabó, G., Hauert, C.: Evolutionary prisoner’s dilemma games with voluntary participation. Phys. Rev. E 66, 062903 (2002)Google Scholar
  18. 18.
    Szolnoki, A., Perc, M.: Promoting cooperation in social dilemmas via simple coevolutionary rules. Eur. Phys. J. B 67(3), 337–344 (2009)CrossRefGoogle Scholar
  19. 19.
    Szolnoki, A., Perc, M.: Leaders should not be conformists in evolutionary social dilemmas. Sci. Rep. 6, 23633 (2016)CrossRefGoogle Scholar
  20. 20.
    Wang, Z., Szolnoki, A., Perc, M.: Self-organization towards optimally interdependent networks by means of coevolution. New J. Phys. 16(3), 033041 (2014)CrossRefGoogle Scholar
  21. 21.
    Xia, C.Y., Meloni, S., Perc, M., Moreno, Y.: Dynamic instability of cooperation due to diverse activity patterns in evolutionary social dilemmas. EPL 109(5), 58002 (2015)CrossRefGoogle Scholar
  22. 22.
    Zimmermann, M.G., Eguíluz, V.M., San Miguel, M.: Cooperation, Adaptation and the Emergence of Leadership, pp. 73–86. Springer, Berlin (2001)zbMATHGoogle Scholar
  23. 23.
    Zimmermann, M.G., Eguíluz, V.M., San Miguel, M.: Coevolution of dynamical states and interactions in dynamic networks. Phys. Rev. E 69, 065102 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marcos Cardinot
    • 1
    Email author
  • Colm O’Riordan
    • 1
  • Josephine Griffith
    • 1
  1. 1.Department of Information TechnologyNational University of IrelandGalwayIreland

Personalised recommendations