Advertisement

Full Shotgun DNA Metagenomics

  • Henrik Christensen
  • John Elmerdahl Olsen
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Full DNA metagenomics is the sequencing of all DNA from a sample followed by assembly and annotation and assignment of sequence information to organisms and function. The assembly of DNA sequence reads attempts to reconstruct genome fragments to draft genomes. The bioinformatics pipelines Mothur and QIIME demonstrated in Chap. 8 for 16S rRNA amplicon sequence analysis can also be used for full DNA metagenomics. The focus in the chapter is on MG-RAST that both can handle the information from predicted proteins in metagenomics data for further prediction of function or taxonomic relationships and also can extract the 16S rRNA gene sequence information and provide more detailed taxonomic information from the specialized databases SILVA, Greengenes, and RDP that were presented in Chap. 8. The most serious limitation of full DNA metagenomics is probably the databases which mainly are being based on cultured microorganisms.

References

  1. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C; Genome Standards Consortium, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T. 2017. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol.;35(8):725–731.CrossRefGoogle Scholar
  2. Bryant DA, Costas AM, Maresca JA, Chew AG, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM. 2007. Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317(5837):523–526.CrossRefGoogle Scholar
  3. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 7, 335–336.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–6.CrossRefGoogle Scholar
  5. de Vries LE, Vallès Y, Agersø Y, Vaishampayan PA, García-Montaner A, Kuehl JV, Christensen H, Barlow M, Francino MP. 2011. The gut as reservoir of antibiotic resistance: microbial diversity of tetracycline resistance in mother and infant. PLoS One 6:e21644.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh HJ, Tappu R. 2016. MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Comput Biol. 21;12(6):e1004957.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Huttenhower C and collaborators (248). 2012. Structure, function and diversity of the healthy human microbiome. Human Microbiome Project Consortium. Nature 486(7402):207–214.CrossRefGoogle Scholar
  8. Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J Mol Biol. 2016 428(4):726–731.CrossRefGoogle Scholar
  9. Keegan KP, Glass EM, Meyer F. 2016. MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function. Methods Mol Biol. 2016;1399:207–33.Google Scholar
  10. Kent WJ. 2002. BLAT--the BLAST-like alignment tool. Genome Res. 12:656–64.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Li et al. 2014. An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology 32, 834–841.CrossRefGoogle Scholar
  12. Liu J, Almeida M, Kabir F, Shakoor S, Qureshi S, Zaidi A, Li S, Tamboura B, Sow SO, Mandomando I, Alonso PL, Ramamurthy T, Sur D, Kotloff K, Nataro J, Levine MM, Stine OC, Houpt E. 2018. Direct Detection of Shigella in Stool Specimens by Use of a Metagenomic Approach. J. Clin. Microbiol. 24;56(2): e01374–17.Google Scholar
  13. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, & Edwards RA. 2008. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes BMC Bioinformatics 2008, 9:386CrossRefPubMedPubMedCentralGoogle Scholar
  14. Mitchell AL, Scheremetjew M, Denise H, Potter S, Tarkowska A, Qureshi M, Salazar GA, Pesseat S, Boland MA, Hunter FMI, Ten Hoopen P, Alako B, Amid C, Wilkinson DJ, Curtis TP, Cochrane G, Finn RD. 2018. EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res. 46(D1):D726-D735.CrossRefGoogle Scholar
  15. Nakamura S, Maeda N, Miron IM, Yoh M, Izutsu K, Kataoka C, Honda T, Yasunaga T, Nakaya T, Kawai J, Hayashizaki Y, Horii T, Iida T. 2008. Metagenomic diagnosis of bacterial infections. Emerg Infect Dis. 14, 1784–1786.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–55.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Roux S, Tournayre J, Mahul A, Debroas D, Enault F. 2014. Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinformatics. 19;15:76.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. 2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 0;9(8):811–814.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF. 2004 Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43.CrossRefGoogle Scholar
  21. Wood DE, Salzberg SL. 2014 Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 3;15(3):R46.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Yang X, Noyes NR, Doster E, Martin JN, Linke LM, Magnuson RJ, Yang H, Geornaras I, Woerner DR, Jones KL, Ruiz J, Boucher C, Morley PS, Belk KE. 2016. Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain. Appl Environ Microbiol. 82(8):2433–2443.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Young W, Moon CD, Thomas DG, Cave NJ, Bermingham EN. 2016. Pre- and post-weaning diet alters the faecal metagenome in the cat with differences vitamin and carbohydrate metabolism gene abundances. Sci Rep. 6:34668.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Veterinary Animal SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations