Short Introduction to Phylogenetic Analysis of Molecular Sequence Data

  • Henrik ChristensenEmail author
  • John Elmerdahl Olsen
Part of the Learning Materials in Biosciences book series (LMB)


Phylogeny is a model of the relationships between organisms, genes, protein, and other structures based on common ancestry. It is also used for epidemiological investigations and analysis of parallel evolution between host and parasite. Phylogenetic trees can be visualized as dendrograms or as radial trees. The most important information read from a phylogenetic tree is the location of the different monophyletic groups. The main types of model parameters needed to construct a tree from a given dataset are the tree shape and the substitution matrix. One of the four types of phylogenetic methods (maximum parsimony, neighbor joining, maximum likelihood, and MrBayes) can then be used to construct the tree. The strength of trees can be evaluated by bootstrap analysis. The major data formats used as input for phylogenetic programs are presented as well as the major program packages. Finally the reader is guided to the construct a neighbor joining tree on his own.


  1. Camin, J. H. & Sokal, R. R. 1965. A method for deducing branching sequences in phylogeny. Evolution 19, 311–326.CrossRefGoogle Scholar
  2. Cavalli-Sforza, L. L. & Edwards, A. W. F. 1967. Phylogenetic analysis: Models and estimation procedures. Am. J. Hum. Gen. 19, 233–257.Google Scholar
  3. Darwin, C. 1859. On the origin of species by means of natural selection or, the preservation of favoured races in the struggle for life. 1th ed. (reprinted 1998), Wordsworth, Ware.Google Scholar
  4. Eck, R. V. & Dayhoff, M. O. 1966. Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Spring, Maryland.Google Scholar
  5. Felsenstein, J. 2004. Inferring phylogenies. Sinauer Associates, Sunderland.Google Scholar
  6. Fitch WM, Margoliash E. 1967. Construction of phylogenetic trees. Science 20, 155(3760), 279–84.CrossRefGoogle Scholar
  7. Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology 59:307–321.CrossRefPubMedGoogle Scholar
  8. Haeckel, E. 1875. Ziel und Wege der heutigen Entwichklingsgeschichte. Jena, Hermann Duft.Google Scholar
  9. Hennig, W. 1950. Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zenteralverlag. Berlin.Google Scholar
  10. Hennig, W. 1966. Phylogenetic Systematics. Univ. Illinois Press, Urbana.Google Scholar
  11. Hillis, D. M. 1995. Approaches for assessing phylogenetic accuracy. Syst. Biol. 44, 3–16.CrossRefGoogle Scholar
  12. Huson, D. H. 1998. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73.CrossRefPubMedGoogle Scholar
  13. Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 3. 1870–1874.CrossRefGoogle Scholar
  14. Lamarck, J. B. 1809. Zoological Philosophy: An exposition with regard to the natural history of animals. Translated by H. Elliot. Macmillan, London 1914. Reprinted by University of Chicago Press, 1984.Google Scholar
  15. Nei, M. & Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford.Google Scholar
  16. Olsen, G.J., Matsuda, H., Hagstrom, R. & Overbeek, R. 1994. fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10, 41–48.PubMedGoogle Scholar
  17. Peplies, J., Kottmann, R., Ludwig, W., Glöckner, F.O. 2008. A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Syst. Appl. Microbiol. 31, 251–257.CrossRefPubMedGoogle Scholar
  18. Price, M. N., Dehal, P. S., & Arkin, A. P. 2010. FastTree 2 -- Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5: e9490.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Saito, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–25.Google Scholar
  20. Sneath, P. H. A. and Sokal, R. R. 1973. Numerical taxonomy. Freeman, San Francisco.Google Scholar
  21. Stamatakis, A. 2014. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies". Bioinformatics 30:1312–1313.CrossRefPubMedPubMedCentralGoogle Scholar

Further Reading

  1. Felsenstein, J. 2004. Inferring Phylogenies 2nd Edition. Sinauer, Sunderland.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Veterinary Animal SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations