Advertisement

Application of Regularised Cavitation Algorithm for Transient Analysis of Rotors Supported in Floating Ring Bearings

  • Steffen NitzschkeEmail author
  • Elmar Woschke
  • Christian Daniel
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 63)

Abstract

In order to analyse the dynamical behaviour of fast-rotating, lightly loaded rotors with floating ring bearings, which mainly occur in turbochargers, a suitable simulation method is required. For that purpose, an online solution of the Reynolds differential equation within a transient rotor dynamic simulation is applied. In addition to the hydraulic coupling of inner and outer lubrication film in the floating ring bearing, a mass-preserving cavitation model is introduced. Therefore, the algorithm of Elrod is adopted by use of a regularisation scheme in the differential equation in order to eliminate the originally occurring numerical problems under transient loads. The developed program is validated based on data available in the literature, as well as on the basis of test rig measurements for a passenger car turbocharger. Finally, the achievable result quality is examined in relation to the computational cost under successive reduction of the hydrodynamic modeling depth.

Keywords

Turbocharger Floating ring bearing Elrod Cavitation Regularisation Rotor dynamics 

Notes

Acknowledgments

The results were generated in the framework of the project WO 2085/2 “Numerische Analyse des transienten Verhaltens dynamisch belasteter Rotorsysteme in Gleit- und Schwimmbuchsenlagern unter Berücksichtigung kavitativer Effekte”, which is supported by the DFG (Deutsche Forschungsgemeinschaft/German Research Foundation). This support is gratefully acknowledged.

References

  1. 1.
    Nitzschke S, Woschke E, Schmicker D, Strackeljan J (2016) Regularised cavitation algorithm for use in transient rotordynamic analysis. Int J Mech Sci 113:175–183.  https://doi.org/10.1016/j.ijmecsci.2016.04.021CrossRefGoogle Scholar
  2. 2.
    Elrod HG (1981) A cavitation algorithm. J Lubr Technol 103:350–354CrossRefGoogle Scholar
  3. 3.
    Kumar A, Booker JF (1991) A finite element cavitation algorithm. J Tribol 113(2):279–284Google Scholar
  4. 4.
    Nitzschke S (2016) Instationäres Verhalten schwimmbuchsengelagerter Rotoren unter Berücksichtigung masseerhaltender Kavitation. PhD thesis, Otto-von-Guericke Universität MagdeburgGoogle Scholar
  5. 5.
    Woschke E, Daniel C, Nitzschke S (2017) Excitation mechanisms of non-linear rotor systems with floating ring bearings - simulation and validation. International journal of mechanical sciences.  https://doi.org/10.1016/j.ijmecsci.2017.09.038
  6. 6.
    Nelson HD (1980) A finite rotating shaft element using Timoshenko beam theory. J Mech Des 102(4):793–803CrossRefGoogle Scholar
  7. 7.
    San Andres L, Kerth J (2004) Thermal effects on the performance of floating ring bearings for turbochargers. Proc Inst Mech Eng Part J: J Eng Tribol 218(5):437–450.  https://doi.org/10.1243/1350650042128067CrossRefGoogle Scholar
  8. 8.
    Ausas RF, Jai M, Buscaglia GC (2009) A mass-conserving algorithm for dynamical lubrication problems with cavitation. J Tribol 131(3):031702.  https://doi.org/10.1115/1.3142903CrossRefGoogle Scholar
  9. 9.
    Kettleborough C (1954) Frictional experiments on lightly-loaded fully floating journal bearings. Aust J Appl Sci 5:211–220Google Scholar
  10. 10.
    Daniel C, Woschke E, Nitzschke S, Strackeljan J, Driot N, Braun KL, Koutsovasilis P (2015) Validierung der Hochlaufsimulation für automotive Abgasturbolader. 11. Internationale Tagung Schwingungen in rotierenden MaschinenGoogle Scholar
  11. 11.
    Woschke E, Daniel C, Kraft C (2015) Hochlaufsimulation II - Nichtlineare Mehrkörpersimulation des Hochlaufverhaltens von ATL-Rotoren in Schwimmbuchsenlagern unter Verwendung nutzergeschriebener Kraftroutinen innerhalb kommerzieller MKS-Programme. Technical report, Institut für Mechanik, Otto-von-Guericke-Universität Magdeburg Institut für Tribologie und Energiewandlungsmaschinen, TU ClausthalGoogle Scholar
  12. 12.
    Nitzschke S, Woschke E, Daniel C (2017) Dynamic behaviour of EHD-contacts using a regularised, mass conserving cavitation algorithm. Technische Mechanik 37(2–5):181–195.  https://doi.org/10.24352/UB.OVGU-2017-095CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Steffen Nitzschke
    • 1
    Email author
  • Elmar Woschke
    • 1
  • Christian Daniel
    • 1
  1. 1.Otto-von-Guericke-UniversityMagdeburgGermany

Personalised recommendations