Skip to main content

Wave and Vibration Analysis of Rotating Periodic Structures by Wave-Based Methods

  • Conference paper
  • First Online:
Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM (IFToMM 2018)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 61))

Included in the following conference series:

Abstract

The vibration of flexible rotating structures has been extensively investigated by the rotordynamics community. The analysis is usually performed via the finite element method using normal mode superposition. However, some interesting features of these structures may be hidden using a modal approach. In this paper, a wave-based approach is used to study the dynamic behavior of flexible rotating structures. Using a wave description, it is straightforward to show that the gyroscopic effect inherent to flexible rotating structures breaks the time-reversal symmetry. This corresponds to an asymmetric wave propagation, i.e., a forward-going wave and its corresponding backward-going pair travel with different wave speeds. In this paper, we show that this feature of flexible rotating structures makes them a natural mechanical circulator. On the other hand, we show that in the case of inhomogeneous flexible rotating structures designed as spectral gap elastic materials, i.e., phononic crystals or locally resonant metamaterials, the rotational speed has a strong influence in the location and width of the band gaps. The mathematical formulation of these problems have been presented by the authors elsewhere. Here, the conceptual aspects of these investigations are discussed under the light of original numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lalanne, M., Ferraris, G.: Rotordynamics Prediction in Engineering. Wiley, Hoboken (1998)

    Google Scholar 

  2. Genta, G.: Dynamics of Rotating Systems. Springer, New York (2005)

    Book  Google Scholar 

  3. Rao, J.S.: History of Rotating Machinery Dynamics. Springer, Dordrecht (2011)

    Book  Google Scholar 

  4. Maldovan, M.: Sound and heat revolutions in phononics. Nature 503 (2013). https://doi.org/10.1038/nature12608

  5. Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 040802–040802-38 (2014). https://doi.org/10.1115/1.4026911

  6. Cummer, S.A., Christensen, J., Al, A.: Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1 (2016). https://doi.org/10.1038/natrevmats.2016.1

  7. Ma, G., Sheng, P.: Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2, e1501595 (2016). https://doi.org/10.1126/sciadv.1501595

    Article  Google Scholar 

  8. Wu, Y., Yang, M., Sheng, P.: Perspective: acoustic metamaterials in transition. J. Appl. Phys. 123, 090901 (2018). https://doi.org/10.1063/1.5007682

    Article  Google Scholar 

  9. Sigalas, M.M., Economou, E.N.: Elastic and acoustic wave band structure. J. Sound Vib. 158, 377–382 (1992). https://doi.org/10.1016/0022-460X(92)90059-7

    Article  Google Scholar 

  10. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000). https://doi.org/10.1126/science.289.5485.1734

    Article  Google Scholar 

  11. Beli, D., Silva, P.B., Arruda, J.R.F.: Vibration analysis of flexible rotating rings using a spectral element formulation. J. Vib. Acoust. 137, 041003-1–11 (2015). https://doi.org/10.1115/1.4029828

  12. Beli, D., Silva, P.B., Arruda, J.R.F.: Mechanical circulator for elastic waves by using the nonreciprocity of flexible rotating rings. Mech. Syst. Sig. Process. 98, 1077–1096 (2018). https://doi.org/10.1016/j.ymssp.2017.05.022

    Article  Google Scholar 

  13. Beli, D.: Mencik, J-.M., Silva, P.B., Arruda, J.R.F.: A projection-based model reduction strategy for the wave and vibration analysis of rotating periodic structures. Comput. Mech. (2018). https://doi.org/10.1007/s00466-018-1576-7

  14. Doyle, J.F.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms. Springer, New York (1997)

    Book  Google Scholar 

  15. Lee, U.: Spectral Element Method in Structural Dynamics. Wiley, Hoboken (2009)

    Book  Google Scholar 

  16. Mencik, J.-M.: New advances in the forced response computation of periodic structures using the wave finite element (WFE) method. Comput. Mech. 54, 789–801 (2014). https://doi.org/10.1007/s00466-014-1033-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Mencik, J.-M., Duhamel, D.: A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitrary-shaped substructures and large-sized finite element models. Finite Elem. Anal. Des. 101, 1–14 (2015). https://doi.org/10.1016/j.finel.2015.03.003

    Article  MathSciNet  Google Scholar 

  18. Silva, P.B., Mencik, J.-M., Arruda, J.R.F.: Wave finite element-based superelements for forced response analysis of coupled systems via dynamic substructuring. Int. J. Numer. Meth. Eng. 107, 453–476 (2016). https://doi.org/10.1002/nme.5176

    Article  MathSciNet  MATH  Google Scholar 

  19. Maznev, A.A., Every, A.G., Wright, O.B.: Reciprocity in reflection and transmission: what is a “phonon diode”? Wave Motion 50, 776–784 (2013). https://doi.org/10.1016/j.wavemoti.2013.02.006

    Article  Google Scholar 

  20. Wang, Z., Fan, S.: Integrated optics devices; Magneto-optic systems. Resonators. Opt. Lett. 30, 1989–1991 (2005). https://doi.org/10.1364/OL.30.001989

    Article  Google Scholar 

  21. Sounas, D.L., Al, A.: Angular-momentum biasing: a new paradigm for linear, magnetic-free, non-reciprocal devices. In: Antennas and Propagation Society International Symposium (APSURSI), pp. 1232-1233 (2014). https://doi.org/10.1109/APS.2014.6904943

  22. Fleury, R., Sounas, D.L., Sieck, C.F., Haberman, M.R., Alù, A.: Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014). https://doi.org/10.1126/science.1246957

    Article  Google Scholar 

  23. Huang, S.C., Soedel, W.: Effects of coriolis acceleration on the free and forced in-plane vibrations of rotating rings on elastic foundation. J. Sound Vib. 115, 253–274 (1987). https://doi.org/10.1016/0022-460X(87)90471-8

    Article  Google Scholar 

  24. Sheng, P., Chan, C.T.: Classical wave localization and spectral gap materials. Z. Krist. 220, 757–764 (2005). https://doi.org/10.1524/zkri.2005.220.9-10.757

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Brazilian agencies, São Paulo Research Foundation (FAPESP - São Paulo, Brazil) and Coordination for the Improvement of Higher Education Personnel (CAPES - Brazil), for the financial support through project number 2014/19054-6 and to the Program Cátedras Franco-Brasileiras at State University of Campinas (UNICAMP). This research has also been performed within the framework of the 4TU.High-Tech Materials Research Programme “New Horizons in designer materials” (www.4tu.nl/htm).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Beli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beli, D., Brandão Silva, P., Mencik, JM., de França Arruda, J.R. (2019). Wave and Vibration Analysis of Rotating Periodic Structures by Wave-Based Methods. In: Cavalca, K., Weber, H. (eds) Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM . IFToMM 2018. Mechanisms and Machine Science, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-99268-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99268-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99267-9

  • Online ISBN: 978-3-319-99268-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics