Advertisement

On Pareto Local Optimal Solutions Networks

  • Arnaud Liefooghe
  • Bilel Derbel
  • Sébastien Verel
  • Manuel López-Ibáñez
  • Hernán Aguirre
  • Kiyoshi Tanaka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11102)

Abstract

Pareto local optimal solutions (PLOS) are believed to highly influence the dynamics and the performance of multi-objective optimization algorithms, especially those based on local search and Pareto dominance. A number of studies so far have investigated their impact on the difficulty of searching the landscape underlying a problem instance. However, the community still lacks knowledge on the structure of PLOS and the way it impacts the effectiveness of multi-objective algorithms. Inspired by the work on local optima networks in single-objective optimization, we introduce a PLOS network (PLOS-net) model as a step toward the fundamental understanding of multi-objective landscapes and search algorithms. Using a comprehensive set of \({\rho }mnk\)-landscapes, PLOS-nets are constructed by full enumeration, and selected network features are further extracted and analyzed with respect to instance characteristics. A correlation and regression analysis is then conducted to capture the importance of the PLOS-net features on the runtime and effectiveness of two prototypical Pareto-based heuristics. In particular, we are able to provide empirical evidence for the relevance of the PLOS-net model to explain algorithm performance. For instance, the degree of connectedness in the PLOS-net is shown to play an even more important role than the number of PLOS in the landscape.

Notes

Acknowledgments

The authors are thankful to Joshua Knowles and Tea Tus̃ar for fruitful discussions relating to this paper. This research was partially conducted in the scope of the MOD\(\bar{\text {O}}\) International Associated Laboratory, and was partially supported by the French National Research Agency (ANR-16-CE23-0013-01).

References

  1. 1.
    Borges, P., Hansen, M.: A basis for future successes in multiobjective combinatorial optimization. Technical report, IMM-REP-1998-8, Institute of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark (1998)Google Scholar
  2. 2.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  3. 3.
    Daolio, F., Liefooghe, A., Verel, S., Aguirre, H.E., Tanaka, K.: Problem features versus algorithm performance on rugged multiobjective combinatorial fitness landscapes. Evol. Comput. 25(4), 555–585 (2017)CrossRefGoogle Scholar
  4. 4.
    Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks and the performance of iterated local search. In: GECCO, pp. 369–376 (2012)Google Scholar
  5. 5.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Hoboken (2001)zbMATHGoogle Scholar
  6. 6.
    Doye, J.P.K.: The network topology of a potential energy landscape: a static scale-free network. Phys. Rev. Lett. 88, 238701 (2002)CrossRefGoogle Scholar
  7. 7.
    Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)Google Scholar
  8. 8.
    Kerschke, P., et al.: Towards analyzing multimodality of continuous multiobjective landscapes. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 962–972. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_90CrossRefGoogle Scholar
  9. 9.
    Knowles, J., Corne, D.: Towards landscape analyses to inform the design of a hybrid local search for the multiobjective quadratic assignment problem. In: Soft Computing Systems, vol. 2002, pp. 271–279 (2002)Google Scholar
  10. 10.
    Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Nat. Comput. 3(1), 37–51 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liefooghe, A., Derbel, B., Verel, S., Aguirre, H., Tanaka, K.: Towards landscape-aware automatic algorithm configuration: preliminary experiments on neutral and rugged landscapes. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 215–232. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55453-2_15CrossRefGoogle Scholar
  12. 12.
    López-Ibáñez, M., Liefooghe, A., Verel, S.: Local Optimal sets and bounded archiving on multi-objective NK-landscapes with correlated objectives. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 621–630. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10762-2_61CrossRefGoogle Scholar
  13. 13.
    Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: GECCO, pp. 555–562 (2008)Google Scholar
  14. 14.
    Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 233–262. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-41888-4_9CrossRefGoogle Scholar
  15. 15.
    Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combinatorial optimization problems. Ann. Oper. Res. 156(1), 83–97 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Richter, H., Engelbrecht, A.E.: Recent Advances in the Theory and Application of Fitness Landscapes. Emergency, Complexity, and Computation. Springer, Berlin (2014).  https://doi.org/10.1007/978-3-642-41888-4CrossRefGoogle Scholar
  17. 17.
    Tomassini, M., Verel, S., Ochoa, G.: Complex-network analysis of combinatorial spaces: the NK landscape case. Phys. Rev. E 78(6), 066114 (2008)CrossRefGoogle Scholar
  18. 18.
    Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Arnaud Liefooghe
    • 1
    • 2
  • Bilel Derbel
    • 1
    • 2
  • Sébastien Verel
    • 3
  • Manuel López-Ibáñez
    • 4
  • Hernán Aguirre
    • 5
  • Kiyoshi Tanaka
    • 5
  1. 1.Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStALLilleFrance
  2. 2.Inria Lille – Nord EuropeVilleneuve d’AscqFrance
  3. 3.Univ. Littoral Côte d’Opale, LISICCalaisFrance
  4. 4.Alliance Manchester Business School, University of ManchesterManchesterUK
  5. 5.Faculty of EngineeringShinshu UniversityNaganoJapan

Personalised recommendations