Advertisement

Transient Liquid Phase Bonding

  • J. R. Holaday
  • C. A. Handwerker
Chapter

Abstract

Transient liquid phase bonding (TLPB) refers to a set of technologies which employ temporary, low-melting temperature liquid phases that solidify isothermally via reaction and/or interdiffusion with another higher melting point metal to form solid bonds and stable interconnects. Binary, ternary, and multicomponent alloy technologies based on such liquid alloys are being investigated in the form of films, foils, or particles for interconnect formation in a wide range of electronics applications, both as a substitute for high-Pb solders and as alternative thermal interface materials. In this chapter, we
  • Introduce the key thermodynamic and kinetic concepts necessary for useful TLPB systems.

  • Discuss potential applications, geometries, and processing considerations.

  • Present a design framework for comparing technologies and a thermodynamic framework for designing TLPB systems.

  • Compare TLPB with competing die attach technologies.

  • Discuss the remaining challenges that must be answered for widespread acceptance and application of TLPB technologies.

Keywords

Solder Bonding Thermodynamics Kinetics Microstructure Interconnects Interdiffusion 

Abbreviations

CTE

Coefficient of thermal expansion

HTP

How melting temperature phase

IGBT

Insulated-gate bipolar transistor

IMC

Intermetallic compound

LPDP

Liquid phase diffusion bonding

LTP

Low-melting temperature phase

MSL

Moisture sensitivity level

NIST

National Institute of science and technology

RoHS

Reduction of hazardous substances act

SAC

Sn-Ag-Cu

SLID

Solid-liquid interdiffusion

TLPB

Transient liquid phase bonding

TLPS

Transient liquid phase sintering

WEEE

Waste electrical and electronic equipment

Notes

Acknowledgments

The authors are grateful for the support from the NSF Cooling Technologies Research Center at Purdue University (NSF I/UCRC Grant IIP 0649702) and for important insights and advice on TLPB from Shailesh Joshi and Eric Dede of Toyota.

References

  1. 1.
    V.A. Baheti, S. Islam, P. Kumar, et al., Effect of Ni content on the diffusion-controlled growth of the product phases in the Cu ( Ni )– Sn system. Philos. Mag. 6435, 1–15 (2016).  https://doi.org/10.1080/14786435.2015.1119905CrossRefGoogle Scholar
  2. 2.
    V.A. Baheti, S. Kashyap, P. Kumar, et al., Effect of Ni on growth kinetics, microstructural evolution and crystal structure in the Cu(Ni)–Sn system. Philos. Mag. 97, 1782–1802 (2017).  https://doi.org/10.1080/14786435.2017.1313466CrossRefGoogle Scholar
  3. 3.
    V.A. Baheti, S. Kashyap, P. Kumar, et al., Bifurcation of the Kirkendall marker plane and the role of Ni and other impurities on the growth of Kirkendall voids in the Cu–Sn system. Acta Mater. 131, 260–270 (2017).  https://doi.org/10.1016/j.actamat.2017.03.068CrossRefGoogle Scholar
  4. 4.
    A.A. Bajwa, J. Wilde, Reliability modeling of Sn-Ag transient liquid phase die-bonds for high-power SiC devices. Microelectron. Reliab. 60, 116–125 (2016).  https://doi.org/10.1016/j.microrel.2016.02.016CrossRefGoogle Scholar
  5. 5.
    L. Bernstein, Semiconductor joining by the solid-liquid-interdiffusion (SLID) process. J. Electrochem. Soc. 113, 1282–1288 (1966).  https://doi.org/10.1149/1.2423806CrossRefGoogle Scholar
  6. 6.
    L. Bernstein, H. Bartholomew, Applications of solid-liquid interdiffusion (SLID) bonding in integrated-circuit fabrication. Trans. Metall. Soc. AIME 236, 405–412 (1966)Google Scholar
  7. 7.
    N.S. Bosco, F.W. Zok, Strength of joints produced by transient liquid phase bonding in the Cu-Sn system. Acta Mater. 53, 2019–2027 (2005)CrossRefGoogle Scholar
  8. 8.
    N.S. Bosco, F.W. Zok, Critical interlayer thickness for transient liquid phase bonding in the Cu-Sn system. Acta Mater. 52, 2965–2972 (2004)CrossRefGoogle Scholar
  9. 9.
    E. Bradley, C.A. Handwerker, J. Bath, et al., Lead-Free Electronics: iNEMI Projects Lead to Successful Manufacturing (John Wiley and Sons, Inc., Hoboken, New Jersey 2007)Google Scholar
  10. 10.
    N. Budhiman, B. Jensen, S. Chemnitz, B. Wagner, High temperature investigation on a nickel–tin transient liquid-phase wafer bonding up to 600°C. Microsyst. Technol. 23, 745–754 (2017).  https://doi.org/10.1007/s00542-015-2738-6CrossRefGoogle Scholar
  11. 11.
    H. Chen, T. Hu, M. Li, Z. Zhao, Cu-Sn core – shell structure powder preform for high-temperature applications based on transient liquid phase bonding. IEEE Trans. Power Electron. 32, 1–1 (2016).  https://doi.org/10.1109/TPEL.2016.2535365CrossRefGoogle Scholar
  12. 12.
    S.-W. Chen, C.-H. Wang, S.-K. Lin, C.-N. Chiu, Phase diagrams of Pb-free solders and their related materials systems. J. Mater. Sci. Mater. Electron. 18, 19–37 (2006).  https://doi.org/10.1007/s10854-006-9010-xGoogle Scholar
  13. 13.
    V. Chidambaram, J. Hattel, J. Hald, High-temperature lead-free solder alternatives. Microelectron. Eng. 88, 981–989 (2011).  https://doi.org/10.1016/j.mee.2010.12.072CrossRefGoogle Scholar
  14. 14.
    V. Chidambaram, H.B. Yeung, G. Shan, Reliability of Au-Ge and Au-Si eutectic solder alloys for high-temperature electronics. J. Electron. Mater. 41, 2107–2117 (2012).  https://doi.org/10.1007/s11664-012-2114-6CrossRefGoogle Scholar
  15. 15.
    H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 41, 824–832 (2010).  https://doi.org/10.1007/s11663-010-9365-5CrossRefGoogle Scholar
  16. 16.
    S.M. Choquette, I.E. Anderson, Liquid-phase diffusion bonding: Temperature effects and solute redistribution in high temperature lead-free composite solders. Int. J. Powder Met. 51, 1–10 (2015)Google Scholar
  17. 17.
    K. Chu, Y. Sohn, C. Moon, A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding. Scr. Mater. 109, 113–117 (2015).  https://doi.org/10.1016/j.scriptamat.2015.07.032CrossRefGoogle Scholar
  18. 18.
    H.Y. Chuang, T.L. Yang, M.S. Kuo, et al., Critical concerns in soldering reactions arising from space confinement in 3-D IC packages. IEEE Trans. Device Mater. Reliab. 12, 233–240 (2012).  https://doi.org/10.1109/TDMR.2012.2185239CrossRefGoogle Scholar
  19. 19.
    T. D’Hondt, S.F. Corbin, Thermal analysis of the compositional shift in a transient liquid phase during sintering of a ternary Cu-Sn-Bi powder mixture. Metall. Mater. Trans. A 37, 217–224 (2006).  https://doi.org/10.1007/s11661-006-0166-zCrossRefGoogle Scholar
  20. 20.
    J. Doesburg, D.G. Ivey, Microstructure and preferred orientation of Au-Sn alloy plated deposits. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 78, 44–52 (2000).  https://doi.org/10.1016/S0921-5107(00)00515-8CrossRefGoogle Scholar
  21. 21.
    C. Ehrhardt, M. Hutter, H. Oppermann, K. Lang, A lead free joining technology for high temperature interconnects using transient liquid phase soldering ( TLPS ), in Electronics Components & Technology Conference, 2014, pp. 1321–1327Google Scholar
  22. 22.
    R.J. Fields, S.R. Low, G.K. Lucey, Physical and mechanical properties of intermetallic compounds commonly found in solder joints, in The Metal Science of Joining, (TMS, Cincinnati, 1991), pp. 165–174Google Scholar
  23. 23.
    J. Flanagan, E. Anderson, H. Bae et al., Low temperature lead-free assembly via transient liquid phase sintering, in IPC APEX EXPO, San Diego, 2012Google Scholar
  24. 24.
    D.R. Frear, Issues related to the implementation of Pb-free electronic solders in consumer electronics. Lead-Free Electron. Solder A Spec. Issue J. Mater. Sci. Mater. Electron. 319–330 (2006).  https://doi.org/10.1007/978-0-387-48433-4_21
  25. 25.
    A. Garnier, C. Gremion, R. Franiatte et al., Investigation of copper-tin transient liquid phase bonding reliability for 3D integration, in ProceedingsElectronic Components and Technology Conference, 2013, pp. 2151–2156Google Scholar
  26. 26.
    H. Greve, L.Y. Chen, I. Fox, F.P. McCluskey, Transient liquid phase sintered attach for power electronics. Proc. Electron Compon. Technol. Conf., 435–440 (2013).  https://doi.org/10.1109/ECTC.2013.6575608
  27. 27.
    H. Greve, S.A. Moeini, F.P. Mccluskey, Reliability of paste based transient liquid phase sintered interconnects, in ProceedingsElectronic Components & Technology Conference, 2014, pp. 1314–1320Google Scholar
  28. 28.
    J. Harris, M. Matthews, Selecting die attach technology for high- power applications. Power Electron Tech., (2009) https://www.powerelectronics.com/dc-dc-converters/selecting-die-attach-technology-high-power-applications. Accessed 1 June 2017Google Scholar
  29. 29.
    M. He, A. Kumar, P.T. Yeo, et al., Interfacial reaction between Sn-rich solders and Ni-based metallization. Thin Solid Films 462–463, 387–394 (2004).  https://doi.org/10.1016/j.tsf.2004.05.062CrossRefGoogle Scholar
  30. 30.
    T.C. Illingworth, I.O. Golosnoy, T.W. Clyne, Modelling of Transient Liquid Phase Bonding in Binary Systems-A New Parametric Study (Technische Universiteit Eindhoven, Eindhoven, 2007)CrossRefGoogle Scholar
  31. 31.
    IPC the ACEI, IPC-4552 Amendment 1 Specification for Electroless Nickel/Immersion Gold (ENIG) Plating for Printed Circuit Boards (IPC, Bannockburn, 2012)Google Scholar
  32. 32.
    D.G. Ivey, Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications. Micron 29, 281–287 (1998).  https://doi.org/10.1016/S0968-4328(97)00057-7CrossRefGoogle Scholar
  33. 33.
    J.W. Jang, D.R. Frear, T.Y. Lee, K.N. Tu, Morphology of interfacial reaction between lead-free solders and electroless Ni–P under bump metallization. J. Appl. Phys. 88, 6359 (2000).  https://doi.org/10.1063/1.1321787CrossRefGoogle Scholar
  34. 34.
    M.J. Kammer, A. Muza, J. Snyder, et al., Optimization of Cu – Ag core – shell solderless interconnect paste technology. IEEE Trans. Compon. Packag. Manuf. Technol 5, 910–920 (2015)CrossRefGoogle Scholar
  35. 35.
    W.K.W. Kim, Q.W.Q. Wang, K.J.K. Jung, et al., Application of Au-Sn eutectic bonding in hermetic RF MEMS wafer level packaging. 9th Int. Symp. Adv. Packag. Mater. Process Prop. Interfaces (IEEE Cat No04TH8742) 2004 Proc. 35, 215–219 (2004).  https://doi.org/10.1007/BF02690529CrossRefGoogle Scholar
  36. 36.
    T.M. Korhonen, P. Su, S.J. Hong, et al., Reactions of lead-free solders with CuNi metallizations. J. Electron. Mater. 29, 1194–1199 (2000).  https://doi.org/10.1007/s11664-000-0012-9CrossRefGoogle Scholar
  37. 37.
    S. Kumar, C.A. Handwerker, M.A. Dayananda, Intrinsic and interdiffusion in Cu-Sn system. J. Phase Equilibria Diffus 32, 309–319 (2011).  https://doi.org/10.1007/s11669-011-9907-9CrossRefGoogle Scholar
  38. 38.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R Rep. 49, 1–60 (2005).  https://doi.org/10.1016/j.mser.2005.03.001CrossRefGoogle Scholar
  39. 39.
    C.C. Lee, C.Y. Wang, G. Matijasevic, Au-In bonding below the eutectic temperature. IEEE Trans. Compon. Hybrids Manuf. Technol. 16, 311–316 (1993).  https://doi.org/10.1109/33.232058CrossRefGoogle Scholar
  40. 40.
    J.F. Li, P.A. Agyakwa, C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59, 1198–1211 (2011).  https://doi.org/10.1016/j.actamat.2010.10.053CrossRefGoogle Scholar
  41. 41.
    J.F. Li, P.A. Agyakwa, C.M. Johnson, Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process. Acta Mater. 58, 3429–3443 (2010).  https://doi.org/10.1016/j.actamat.2010.02.018CrossRefGoogle Scholar
  42. 42.
    C.-H. Lin, S.-W. Chen, C.-H. Wang, Phase equilibria and solidification properties of Sn-Cu-Ni alloys. J. Electron. Mater. 31, 907–915 (2002).  https://doi.org/10.1007/s11664-002-0182-8CrossRefGoogle Scholar
  43. 43.
    Y.C. Lin, T.Y. Shih, S.K. Tien, J.G. Duh, Suppressing Ni-Sn-P growth in SnAgCu/Ni-P solder joints. Scr. Mater. 56, 49–52 (2007).  https://doi.org/10.1016/j.scriptamat.2006.08.062CrossRefGoogle Scholar
  44. 44.
    A. Lis, M.S. Park, R. Arroyave, C. Leinenbach, Early stage growth characteristics of Ag3Sn intermetallic compounds during solid–solid and solid–liquid reactions in the Ag–Sn interlayer system: Experiments and simulations. J. Alloys Compd. 617, 763–773 (2014).  https://doi.org/10.1016/j.jallcom.2014.08.082CrossRefGoogle Scholar
  45. 45.
    H. Liu, K. Wang, K.E. Aasmundtveit, N. Hoivik, Intermetallic compound formation mechanisms for Cu-Sn solid–liquid interdiffusion bonding. J. Electron. Mater. 41, 2453–2462 (2012).  https://doi.org/10.1007/s11664-012-2060-3CrossRefGoogle Scholar
  46. 46.
    Y. Liu, S. Liu, C. Zhang, et al., Thermodynamic assessment of the Bi–Ni and Bi–Ni–X (X = Ag, Cu) systems. J. Electron. Mater. 45, 1041–1056 (2016).  https://doi.org/10.1007/s11664-015-4272-9CrossRefGoogle Scholar
  47. 47.
    T.-T. Luu, A. Duan, K.E. Aasmundtveit, N. Hoivik, Optimized Cu-Sn wafer-level bonding using intermetallic phase characterization. J. Electron. Mater. 42, 3582–3592 (2013).  https://doi.org/10.1007/s11664-013-2711-zCrossRefGoogle Scholar
  48. 48.
    W. MacDonald, T. Eagar, Transient liquid phase bonding. Annu. Rev. Mater. 22, 23–46 (1992).  https://doi.org/10.1146/annurev.ms.22.080192.000323CrossRefGoogle Scholar
  49. 49.
    V.R. Manikam, C. Kuan Yew, Die attach materials for high temperature applications: A review. Compon. Packag. Manuf. Technol. IEEE Trans. 1, 457–478 (2011).  https://doi.org/10.1109/tcpmt.2010.2100432CrossRefGoogle Scholar
  50. 50.
    P. McCluskey, H. Greve, Transient liquid phase sintered joints for wide bandgap power electronics packaging, in Pan Pacific Conference Proceedings, 2014, pp. 1–10Google Scholar
  51. 51.
    S. Menon, E. George, M. Osterman, M. Pecht, High lead solder (over 85%) solder in the electronics industry: RoHS exemptions and alternatives. J. Mater. Sci. Mater. Electron. 26, 4021–4030 (2015).  https://doi.org/10.1007/s10854-015-2940-4CrossRefGoogle Scholar
  52. 52.
    B. Meschi Amoli, A. Hu, N.Y. Zhou, B. Zhao, Recent progresses on hybrid micro-nano filler systems for electrically conductive adhesives (ECAs) applications. J. Mater. Sci. Mater. Electron. 26, 4730–4745 (2015).  https://doi.org/10.1007/s10854-015-3016-1CrossRefGoogle Scholar
  53. 53.
    A.S. Moeini, H. Greve, P.F. McCluskey, Reliability and failure analysis of Cu-Sn transient liquid phase sintered (TLPS) joints under power cycling loads. WiPDA 2015 – 3rd IEEE Work Wide Bandgap Power Devices Appl., 383–389 (2015).  https://doi.org/10.1109/WiPDA.2015.7369306
  54. 54.
    K.-W. Moon, W.J. Boettinger, U.R. Kattner, et al., Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys. J. Electron. Mater. 29, 1122–1136 (2000).  https://doi.org/10.1007/s11664-000-0003-xCrossRefGoogle Scholar
  55. 55.
    NIST, NIST phase diagrams & computation thermodynamics: Pb-Sn system (2002), https://www.metallurgy.nist.gov/phase/solder/pbsn.html. Accessed 1 June 2017
  56. 56.
    NIST, NIST phase diagrams & computation thermodynamics: Cu-Sn system (2002), https://www.metallurgy.nist.gov/phase/solder/cusn.html. Accessed 1 June 2017
  57. 57.
    NIST, NIST phase diagrams & computation thermodynamics: Ag-Cu-Sn system (2002), https://www.metallurgy.nist.gov/phase/solder/agcusn.html. Accessed 1 June 2017
  58. 58.
    NIST, NIST phase diagrams & computation thermodynamics: Bi-Cu-Sn system (2002), https://www.metallurgy.nist.gov/phase/solder/bicusn.html. Accessed 1 June 2017
  59. 59.
    NIST, NIST phase diagrams & computation thermodynamics: Ag-Sn system (2002), https://www.metallurgy.nist.gov/phase/solder/agsn.html. Accessed 1 June 2017
  60. 60.
    NIST, NIST phase diagrams & computation thermodynamics: Ag-Bi-Sn system (2002), https://www.metallurgy.nist.gov/phase/solder/agbisn.html. Accessed 1 June 2017
  61. 61.
    K. Nogita, T. Nishimura, Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn-Cu-Ni lead-free solder alloys. Scr. Mater. 59, 191–194 (2008).  https://doi.org/10.1016/j.scriptamat.2008.03.002CrossRefGoogle Scholar
  62. 62.
    H. Ohtani, I. Satoh, M. Miyashita, K. Ishida, Thermodynamic analysis of the Sn-Ag-Bi ternary phase diagram. Mater. Trans. 42, 722–731 (2001)CrossRefGoogle Scholar
  63. 63.
    Ormet Circuits I, Ormet family of sintering pastes (2012), https://www.ormetcircuits.com/d/parts/parts.php. Accessed 1 June 2017
  64. 64.
    S.A. Paknejad, S.H. Mannan, Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 70, 1–11 (2017).  https://doi.org/10.1016/j.microrel.2017.01.010CrossRefGoogle Scholar
  65. 65.
    B. Pan, C.K. Yeo, Transient liquid phase sintering (TLPS) conductive adhesives for high temperature automotive applications. SAE Int. J. Mater. Manuf. 7, 320–327 (2014).  https://doi.org/10.4271/2014-01-0797CrossRefGoogle Scholar
  66. 66.
    M.S. Park, S.L. Gibbons, R. Arroyave, Prediction of processing maps for transient liquid phase diffusion bonding of Cu/Sn/Cu joints in microelectronics packaging. Microelectron. Reliab. 54, 1401–1411 (2014).  https://doi.org/10.1016/j.microrel.2014.02.023CrossRefGoogle Scholar
  67. 67.
    M.S. Park, S.L. Gibbons, R. Arróyave, Phase-field simulations of intermetallic compound growth in Cu/Sn/Cu sandwich structure under transient liquid phase bonding conditions. Acta Mater. 60, 6278–6287 (2012).  https://doi.org/10.1016/j.actamat.2012.07.063CrossRefGoogle Scholar
  68. 68.
    Parliament E, Directive 2011/65/EU of the European Parliament and of the Council on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) – Recast, 2011Google Scholar
  69. 69.
    Parliament E, Directive 2012/19/EU of the European Parliament and the Council on Waste Electrical and Electronic Equipment (WEEE) – Recast, 2012Google Scholar
  70. 70.
    A. Paul, The Kirkendall Effect in Solid State Diffusion (Technische Universiteit Eindhoven, Eindhoven, 2004)Google Scholar
  71. 71.
    K.J. Puttlitz, K.A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (Marcel Dekker, Inc., New York, 2004)CrossRefGoogle Scholar
  72. 72.
    K.N. Reeve, J.R. Holaday, S.M. Choquette, et al., Advances in Pb-free solder microstructure control and interconnect design. J. Phase Equilibria Diffus 37, 369–386 (2016).  https://doi.org/10.1007/s11669-016-0476-9CrossRefGoogle Scholar
  73. 73.
    J. Roman, T. Eagar, Low stress die attach by low temperature transient liquid phase bonding. Int. Soc. Hybrid Microelectron. Symp. Proc. (1992).  https://doi.org/10.1007/978-3-642-05463-1CrossRefGoogle Scholar
  74. 74.
    C. Schmetterer, J. Vizdal, A. Kroupa, et al., The ni-rich part of the ni-P-Sn system: Isothermal sections. J. Electron. Mater. 38, 2275–2300 (2009).  https://doi.org/10.1007/s11664-009-0854-8CrossRefGoogle Scholar
  75. 75.
    H. Shao, A. Wu, Y. Bao, et al., Microstructure characterization and mechanical behavior for Ag3Sn joint produced by foil-based TLP bonding in air atmosphere. Mater. Sci. Eng. A 680, 221–231 (2017).  https://doi.org/10.1016/j.msea.2016.10.092CrossRefGoogle Scholar
  76. 76.
    K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43, 947–961 (2014).  https://doi.org/10.1007/s11664-013-2967-3CrossRefGoogle Scholar
  77. 77.
    K. Suganuma, S.J. Kim, K.S. Kim, High-temperature lead-free solders: Properties and possibilities. JOM 61, 64–71 (2009).  https://doi.org/10.1007/s11837-009-0013-yCrossRefGoogle Scholar
  78. 78.
    W.J. Tomlinson, H.G. Rhodes, Kinetics of intermetallic compound growth between nickel, electroless, Ni-P, electroless Ni-B and tin at 453 to 493 K. J. Mater. Sci. 22, 1769–1772 (1987).  https://doi.org/10.1007/BF01132405CrossRefGoogle Scholar
  79. 79.
    K.N. Tu, A.M. Gusak, M. Li, Physics and materials challenges for lead-free solders. J. Appl. Phys. 93, 1335–1353 (2003).  https://doi.org/10.1063/1.1517165CrossRefGoogle Scholar
  80. 80.
    V. Vuorinen, H. Yu, T. Laurila, J.K. Kivilahti, Formation of intermetallic compounds between liquid Sn and various CuNi x metallizations. J. Electron. Mater. 37, 792–805 (2008).  https://doi.org/10.1007/s11664-008-0411-xCrossRefGoogle Scholar
  81. 81.
    H.P. Wu, X.J. Wu, M.Y. Ge, et al., Effect analysis of filler sizes on percolation threshold of isotropical conductive adhesives. Compos. Sci. Technol. 67, 1116–1120 (2007).  https://doi.org/10.1016/j.compscitech.2006.05.017CrossRefGoogle Scholar
  82. 82.
    G. Zeng, S. McDonald, K. Nogita, Development of high-temperature solders: Review. Microelectron. Reliab. 52, 1306–1322 (2012).  https://doi.org/10.1016/j.microrel.2012.02.018CrossRefGoogle Scholar
  83. 83.
    H. Zhang, N. Lee, Reliability of BiAgX as a drop-in solution for high temperature lead-free die-attach applications. J. Surf. Mt. Technol. 26, 28–32 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. R. Holaday
    • 1
  • C. A. Handwerker
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations