Transient Liquid Phase Bonding

  • J. R. Holaday
  • C. A. Handwerker


Transient liquid phase bonding (TLPB) refers to a set of technologies which employ temporary, low-melting temperature liquid phases that solidify isothermally via reaction and/or interdiffusion with another higher melting point metal to form solid bonds and stable interconnects. Binary, ternary, and multicomponent alloy technologies based on such liquid alloys are being investigated in the form of films, foils, or particles for interconnect formation in a wide range of electronics applications, both as a substitute for high-Pb solders and as alternative thermal interface materials. In this chapter, we
  • Introduce the key thermodynamic and kinetic concepts necessary for useful TLPB systems.

  • Discuss potential applications, geometries, and processing considerations.

  • Present a design framework for comparing technologies and a thermodynamic framework for designing TLPB systems.

  • Compare TLPB with competing die attach technologies.

  • Discuss the remaining challenges that must be answered for widespread acceptance and application of TLPB technologies.


Solder Bonding Thermodynamics Kinetics Microstructure Interconnects Interdiffusion 



Coefficient of thermal expansion


How melting temperature phase


Insulated-gate bipolar transistor


Intermetallic compound


Liquid phase diffusion bonding


Low-melting temperature phase


Moisture sensitivity level


National Institute of science and technology


Reduction of hazardous substances act




Solid-liquid interdiffusion


Transient liquid phase bonding


Transient liquid phase sintering


Waste electrical and electronic equipment



The authors are grateful for the support from the NSF Cooling Technologies Research Center at Purdue University (NSF I/UCRC Grant IIP 0649702) and for important insights and advice on TLPB from Shailesh Joshi and Eric Dede of Toyota.


  1. 1.
    V.A. Baheti, S. Islam, P. Kumar, et al., Effect of Ni content on the diffusion-controlled growth of the product phases in the Cu ( Ni )– Sn system. Philos. Mag. 6435, 1–15 (2016). Scholar
  2. 2.
    V.A. Baheti, S. Kashyap, P. Kumar, et al., Effect of Ni on growth kinetics, microstructural evolution and crystal structure in the Cu(Ni)–Sn system. Philos. Mag. 97, 1782–1802 (2017). Scholar
  3. 3.
    V.A. Baheti, S. Kashyap, P. Kumar, et al., Bifurcation of the Kirkendall marker plane and the role of Ni and other impurities on the growth of Kirkendall voids in the Cu–Sn system. Acta Mater. 131, 260–270 (2017). Scholar
  4. 4.
    A.A. Bajwa, J. Wilde, Reliability modeling of Sn-Ag transient liquid phase die-bonds for high-power SiC devices. Microelectron. Reliab. 60, 116–125 (2016). Scholar
  5. 5.
    L. Bernstein, Semiconductor joining by the solid-liquid-interdiffusion (SLID) process. J. Electrochem. Soc. 113, 1282–1288 (1966). Scholar
  6. 6.
    L. Bernstein, H. Bartholomew, Applications of solid-liquid interdiffusion (SLID) bonding in integrated-circuit fabrication. Trans. Metall. Soc. AIME 236, 405–412 (1966)Google Scholar
  7. 7.
    N.S. Bosco, F.W. Zok, Strength of joints produced by transient liquid phase bonding in the Cu-Sn system. Acta Mater. 53, 2019–2027 (2005)CrossRefGoogle Scholar
  8. 8.
    N.S. Bosco, F.W. Zok, Critical interlayer thickness for transient liquid phase bonding in the Cu-Sn system. Acta Mater. 52, 2965–2972 (2004)CrossRefGoogle Scholar
  9. 9.
    E. Bradley, C.A. Handwerker, J. Bath, et al., Lead-Free Electronics: iNEMI Projects Lead to Successful Manufacturing (John Wiley and Sons, Inc., Hoboken, New Jersey 2007)Google Scholar
  10. 10.
    N. Budhiman, B. Jensen, S. Chemnitz, B. Wagner, High temperature investigation on a nickel–tin transient liquid-phase wafer bonding up to 600°C. Microsyst. Technol. 23, 745–754 (2017). Scholar
  11. 11.
    H. Chen, T. Hu, M. Li, Z. Zhao, Cu-Sn core – shell structure powder preform for high-temperature applications based on transient liquid phase bonding. IEEE Trans. Power Electron. 32, 1–1 (2016). Scholar
  12. 12.
    S.-W. Chen, C.-H. Wang, S.-K. Lin, C.-N. Chiu, Phase diagrams of Pb-free solders and their related materials systems. J. Mater. Sci. Mater. Electron. 18, 19–37 (2006). Scholar
  13. 13.
    V. Chidambaram, J. Hattel, J. Hald, High-temperature lead-free solder alternatives. Microelectron. Eng. 88, 981–989 (2011). Scholar
  14. 14.
    V. Chidambaram, H.B. Yeung, G. Shan, Reliability of Au-Ge and Au-Si eutectic solder alloys for high-temperature electronics. J. Electron. Mater. 41, 2107–2117 (2012). Scholar
  15. 15.
    H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 41, 824–832 (2010). Scholar
  16. 16.
    S.M. Choquette, I.E. Anderson, Liquid-phase diffusion bonding: Temperature effects and solute redistribution in high temperature lead-free composite solders. Int. J. Powder Met. 51, 1–10 (2015)Google Scholar
  17. 17.
    K. Chu, Y. Sohn, C. Moon, A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding. Scr. Mater. 109, 113–117 (2015). Scholar
  18. 18.
    H.Y. Chuang, T.L. Yang, M.S. Kuo, et al., Critical concerns in soldering reactions arising from space confinement in 3-D IC packages. IEEE Trans. Device Mater. Reliab. 12, 233–240 (2012). Scholar
  19. 19.
    T. D’Hondt, S.F. Corbin, Thermal analysis of the compositional shift in a transient liquid phase during sintering of a ternary Cu-Sn-Bi powder mixture. Metall. Mater. Trans. A 37, 217–224 (2006). Scholar
  20. 20.
    J. Doesburg, D.G. Ivey, Microstructure and preferred orientation of Au-Sn alloy plated deposits. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 78, 44–52 (2000). Scholar
  21. 21.
    C. Ehrhardt, M. Hutter, H. Oppermann, K. Lang, A lead free joining technology for high temperature interconnects using transient liquid phase soldering ( TLPS ), in Electronics Components & Technology Conference, 2014, pp. 1321–1327Google Scholar
  22. 22.
    R.J. Fields, S.R. Low, G.K. Lucey, Physical and mechanical properties of intermetallic compounds commonly found in solder joints, in The Metal Science of Joining, (TMS, Cincinnati, 1991), pp. 165–174Google Scholar
  23. 23.
    J. Flanagan, E. Anderson, H. Bae et al., Low temperature lead-free assembly via transient liquid phase sintering, in IPC APEX EXPO, San Diego, 2012Google Scholar
  24. 24.
    D.R. Frear, Issues related to the implementation of Pb-free electronic solders in consumer electronics. Lead-Free Electron. Solder A Spec. Issue J. Mater. Sci. Mater. Electron. 319–330 (2006).
  25. 25.
    A. Garnier, C. Gremion, R. Franiatte et al., Investigation of copper-tin transient liquid phase bonding reliability for 3D integration, in ProceedingsElectronic Components and Technology Conference, 2013, pp. 2151–2156Google Scholar
  26. 26.
    H. Greve, L.Y. Chen, I. Fox, F.P. McCluskey, Transient liquid phase sintered attach for power electronics. Proc. Electron Compon. Technol. Conf., 435–440 (2013).
  27. 27.
    H. Greve, S.A. Moeini, F.P. Mccluskey, Reliability of paste based transient liquid phase sintered interconnects, in ProceedingsElectronic Components & Technology Conference, 2014, pp. 1314–1320Google Scholar
  28. 28.
    J. Harris, M. Matthews, Selecting die attach technology for high- power applications. Power Electron Tech., (2009) Accessed 1 June 2017Google Scholar
  29. 29.
    M. He, A. Kumar, P.T. Yeo, et al., Interfacial reaction between Sn-rich solders and Ni-based metallization. Thin Solid Films 462–463, 387–394 (2004). Scholar
  30. 30.
    T.C. Illingworth, I.O. Golosnoy, T.W. Clyne, Modelling of Transient Liquid Phase Bonding in Binary Systems-A New Parametric Study (Technische Universiteit Eindhoven, Eindhoven, 2007)CrossRefGoogle Scholar
  31. 31.
    IPC the ACEI, IPC-4552 Amendment 1 Specification for Electroless Nickel/Immersion Gold (ENIG) Plating for Printed Circuit Boards (IPC, Bannockburn, 2012)Google Scholar
  32. 32.
    D.G. Ivey, Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications. Micron 29, 281–287 (1998). Scholar
  33. 33.
    J.W. Jang, D.R. Frear, T.Y. Lee, K.N. Tu, Morphology of interfacial reaction between lead-free solders and electroless Ni–P under bump metallization. J. Appl. Phys. 88, 6359 (2000). Scholar
  34. 34.
    M.J. Kammer, A. Muza, J. Snyder, et al., Optimization of Cu – Ag core – shell solderless interconnect paste technology. IEEE Trans. Compon. Packag. Manuf. Technol 5, 910–920 (2015)CrossRefGoogle Scholar
  35. 35.
    W.K.W. Kim, Q.W.Q. Wang, K.J.K. Jung, et al., Application of Au-Sn eutectic bonding in hermetic RF MEMS wafer level packaging. 9th Int. Symp. Adv. Packag. Mater. Process Prop. Interfaces (IEEE Cat No04TH8742) 2004 Proc. 35, 215–219 (2004). Scholar
  36. 36.
    T.M. Korhonen, P. Su, S.J. Hong, et al., Reactions of lead-free solders with CuNi metallizations. J. Electron. Mater. 29, 1194–1199 (2000). Scholar
  37. 37.
    S. Kumar, C.A. Handwerker, M.A. Dayananda, Intrinsic and interdiffusion in Cu-Sn system. J. Phase Equilibria Diffus 32, 309–319 (2011). Scholar
  38. 38.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R Rep. 49, 1–60 (2005). Scholar
  39. 39.
    C.C. Lee, C.Y. Wang, G. Matijasevic, Au-In bonding below the eutectic temperature. IEEE Trans. Compon. Hybrids Manuf. Technol. 16, 311–316 (1993). Scholar
  40. 40.
    J.F. Li, P.A. Agyakwa, C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59, 1198–1211 (2011). Scholar
  41. 41.
    J.F. Li, P.A. Agyakwa, C.M. Johnson, Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process. Acta Mater. 58, 3429–3443 (2010). Scholar
  42. 42.
    C.-H. Lin, S.-W. Chen, C.-H. Wang, Phase equilibria and solidification properties of Sn-Cu-Ni alloys. J. Electron. Mater. 31, 907–915 (2002). Scholar
  43. 43.
    Y.C. Lin, T.Y. Shih, S.K. Tien, J.G. Duh, Suppressing Ni-Sn-P growth in SnAgCu/Ni-P solder joints. Scr. Mater. 56, 49–52 (2007). Scholar
  44. 44.
    A. Lis, M.S. Park, R. Arroyave, C. Leinenbach, Early stage growth characteristics of Ag3Sn intermetallic compounds during solid–solid and solid–liquid reactions in the Ag–Sn interlayer system: Experiments and simulations. J. Alloys Compd. 617, 763–773 (2014). Scholar
  45. 45.
    H. Liu, K. Wang, K.E. Aasmundtveit, N. Hoivik, Intermetallic compound formation mechanisms for Cu-Sn solid–liquid interdiffusion bonding. J. Electron. Mater. 41, 2453–2462 (2012). Scholar
  46. 46.
    Y. Liu, S. Liu, C. Zhang, et al., Thermodynamic assessment of the Bi–Ni and Bi–Ni–X (X = Ag, Cu) systems. J. Electron. Mater. 45, 1041–1056 (2016). Scholar
  47. 47.
    T.-T. Luu, A. Duan, K.E. Aasmundtveit, N. Hoivik, Optimized Cu-Sn wafer-level bonding using intermetallic phase characterization. J. Electron. Mater. 42, 3582–3592 (2013). Scholar
  48. 48.
    W. MacDonald, T. Eagar, Transient liquid phase bonding. Annu. Rev. Mater. 22, 23–46 (1992). Scholar
  49. 49.
    V.R. Manikam, C. Kuan Yew, Die attach materials for high temperature applications: A review. Compon. Packag. Manuf. Technol. IEEE Trans. 1, 457–478 (2011). Scholar
  50. 50.
    P. McCluskey, H. Greve, Transient liquid phase sintered joints for wide bandgap power electronics packaging, in Pan Pacific Conference Proceedings, 2014, pp. 1–10Google Scholar
  51. 51.
    S. Menon, E. George, M. Osterman, M. Pecht, High lead solder (over 85%) solder in the electronics industry: RoHS exemptions and alternatives. J. Mater. Sci. Mater. Electron. 26, 4021–4030 (2015). Scholar
  52. 52.
    B. Meschi Amoli, A. Hu, N.Y. Zhou, B. Zhao, Recent progresses on hybrid micro-nano filler systems for electrically conductive adhesives (ECAs) applications. J. Mater. Sci. Mater. Electron. 26, 4730–4745 (2015). Scholar
  53. 53.
    A.S. Moeini, H. Greve, P.F. McCluskey, Reliability and failure analysis of Cu-Sn transient liquid phase sintered (TLPS) joints under power cycling loads. WiPDA 2015 – 3rd IEEE Work Wide Bandgap Power Devices Appl., 383–389 (2015).
  54. 54.
    K.-W. Moon, W.J. Boettinger, U.R. Kattner, et al., Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys. J. Electron. Mater. 29, 1122–1136 (2000). Scholar
  55. 55.
    NIST, NIST phase diagrams & computation thermodynamics: Pb-Sn system (2002), Accessed 1 June 2017
  56. 56.
    NIST, NIST phase diagrams & computation thermodynamics: Cu-Sn system (2002), Accessed 1 June 2017
  57. 57.
    NIST, NIST phase diagrams & computation thermodynamics: Ag-Cu-Sn system (2002), Accessed 1 June 2017
  58. 58.
    NIST, NIST phase diagrams & computation thermodynamics: Bi-Cu-Sn system (2002), Accessed 1 June 2017
  59. 59.
    NIST, NIST phase diagrams & computation thermodynamics: Ag-Sn system (2002), Accessed 1 June 2017
  60. 60.
    NIST, NIST phase diagrams & computation thermodynamics: Ag-Bi-Sn system (2002), Accessed 1 June 2017
  61. 61.
    K. Nogita, T. Nishimura, Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn-Cu-Ni lead-free solder alloys. Scr. Mater. 59, 191–194 (2008). Scholar
  62. 62.
    H. Ohtani, I. Satoh, M. Miyashita, K. Ishida, Thermodynamic analysis of the Sn-Ag-Bi ternary phase diagram. Mater. Trans. 42, 722–731 (2001)CrossRefGoogle Scholar
  63. 63.
    Ormet Circuits I, Ormet family of sintering pastes (2012), Accessed 1 June 2017
  64. 64.
    S.A. Paknejad, S.H. Mannan, Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 70, 1–11 (2017). Scholar
  65. 65.
    B. Pan, C.K. Yeo, Transient liquid phase sintering (TLPS) conductive adhesives for high temperature automotive applications. SAE Int. J. Mater. Manuf. 7, 320–327 (2014). Scholar
  66. 66.
    M.S. Park, S.L. Gibbons, R. Arroyave, Prediction of processing maps for transient liquid phase diffusion bonding of Cu/Sn/Cu joints in microelectronics packaging. Microelectron. Reliab. 54, 1401–1411 (2014). Scholar
  67. 67.
    M.S. Park, S.L. Gibbons, R. Arróyave, Phase-field simulations of intermetallic compound growth in Cu/Sn/Cu sandwich structure under transient liquid phase bonding conditions. Acta Mater. 60, 6278–6287 (2012). Scholar
  68. 68.
    Parliament E, Directive 2011/65/EU of the European Parliament and of the Council on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) – Recast, 2011Google Scholar
  69. 69.
    Parliament E, Directive 2012/19/EU of the European Parliament and the Council on Waste Electrical and Electronic Equipment (WEEE) – Recast, 2012Google Scholar
  70. 70.
    A. Paul, The Kirkendall Effect in Solid State Diffusion (Technische Universiteit Eindhoven, Eindhoven, 2004)Google Scholar
  71. 71.
    K.J. Puttlitz, K.A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (Marcel Dekker, Inc., New York, 2004)CrossRefGoogle Scholar
  72. 72.
    K.N. Reeve, J.R. Holaday, S.M. Choquette, et al., Advances in Pb-free solder microstructure control and interconnect design. J. Phase Equilibria Diffus 37, 369–386 (2016). Scholar
  73. 73.
    J. Roman, T. Eagar, Low stress die attach by low temperature transient liquid phase bonding. Int. Soc. Hybrid Microelectron. Symp. Proc. (1992). Scholar
  74. 74.
    C. Schmetterer, J. Vizdal, A. Kroupa, et al., The ni-rich part of the ni-P-Sn system: Isothermal sections. J. Electron. Mater. 38, 2275–2300 (2009). Scholar
  75. 75.
    H. Shao, A. Wu, Y. Bao, et al., Microstructure characterization and mechanical behavior for Ag3Sn joint produced by foil-based TLP bonding in air atmosphere. Mater. Sci. Eng. A 680, 221–231 (2017). Scholar
  76. 76.
    K.S. Siow, Are sintered silver joints ready for use as interconnect material in microelectronic packaging? J. Electron. Mater. 43, 947–961 (2014). Scholar
  77. 77.
    K. Suganuma, S.J. Kim, K.S. Kim, High-temperature lead-free solders: Properties and possibilities. JOM 61, 64–71 (2009). Scholar
  78. 78.
    W.J. Tomlinson, H.G. Rhodes, Kinetics of intermetallic compound growth between nickel, electroless, Ni-P, electroless Ni-B and tin at 453 to 493 K. J. Mater. Sci. 22, 1769–1772 (1987). Scholar
  79. 79.
    K.N. Tu, A.M. Gusak, M. Li, Physics and materials challenges for lead-free solders. J. Appl. Phys. 93, 1335–1353 (2003). Scholar
  80. 80.
    V. Vuorinen, H. Yu, T. Laurila, J.K. Kivilahti, Formation of intermetallic compounds between liquid Sn and various CuNi x metallizations. J. Electron. Mater. 37, 792–805 (2008). Scholar
  81. 81.
    H.P. Wu, X.J. Wu, M.Y. Ge, et al., Effect analysis of filler sizes on percolation threshold of isotropical conductive adhesives. Compos. Sci. Technol. 67, 1116–1120 (2007). Scholar
  82. 82.
    G. Zeng, S. McDonald, K. Nogita, Development of high-temperature solders: Review. Microelectron. Reliab. 52, 1306–1322 (2012). Scholar
  83. 83.
    H. Zhang, N. Lee, Reliability of BiAgX as a drop-in solution for high temperature lead-free die-attach applications. J. Surf. Mt. Technol. 26, 28–32 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. R. Holaday
    • 1
  • C. A. Handwerker
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations