Advertisement

Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm for Non-dominated Sorting

  • Margarita Markina
  • Maxim Buzdalov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11101)

Abstract

We present an algorithm for non-dominated sorting that is suitable for large-scale multiobjective optimisation. This algorithm is a hybrid of two previously known algorithms: the divide-and-conquer algorithm initially proposed by Jensen, and the non-dominated tree algorithm proposed by Gustavsson and Syberfeldt.

While possessing the good worst-case asymptotic behaviour of the divide-and-conquer algorithm, the proposed algorithm is also very efficient in practice. In our experimental study it is shown to outperform both of its parents on the majority of problem instances, both sampled uniformly from a hypercube and having a single front, with as large as \(10^6\) points and up to 15 objectives.

Keywords

Multiobjective optimisation Non-dominated sorting Large-scale optimisation 

Notes

Acknowledgment

We would like to acknowledge the support of this research by the Russian Scientific Foundation, agreement No. 17-71-20178.

References

  1. 1.
    Brockhoff, D., Wagner, T.: GECCO 2016 tutorial on evolutionary multiobjective optimization. In: Proceedings of Genetic and Evolutionary Computation Conference Companion, pp. 201–227 (2016)Google Scholar
  2. 2.
    Buzdalov, M., Shalyto, A.: A provably asymptotically fast version of the generalized jensen algorithm for non-dominated sorting. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 528–537. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10762-2_52CrossRefGoogle Scholar
  3. 3.
    Coello Coello, C.A., Toscano Pulido, G.: A micro-genetic algorithm for multiobjective optimization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44719-9_9CrossRefzbMATHGoogle Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  5. 5.
    Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based selection in evolutionary multiobjective optimization. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 283–290. Morgan Kaufmann Publishers (2001)Google Scholar
  6. 6.
    Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)CrossRefGoogle Scholar
  7. 7.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  8. 8.
    Fang, H., Wang, Q., Tu, Y.C., Horstemeyer, M.F.: An efficient non-dominated sorting method for evolutionary algorithms. Evol. Comput. 16(3), 355–384 (2008)CrossRefGoogle Scholar
  9. 9.
    Fonseca, C.M., Fleming, P.J.: Nonlinear system identification with multiobjective genetic algorithm. In: Proceedings of the World Congress of the International Federation of Automatic Control, pp. 187–192 (1996)Google Scholar
  10. 10.
    Fortin, F.A., Grenier, S., Parizeau, M.: Generalizing the improved run-time complexity algorithm for non-dominated sorting. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 615–622. ACM (2013)Google Scholar
  11. 11.
    Gustavsson, P., Syberfeldt, A.: A new algorithm using the non-dominated tree to improve non-dominated sorting. Evol. Comput. 26(1), 89–116 (2018)CrossRefGoogle Scholar
  12. 12.
    Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms. IEEE Trans. Evol. Comput. 7(5), 503–515 (2003)CrossRefGoogle Scholar
  13. 13.
    Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)CrossRefGoogle Scholar
  14. 14.
    Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM 22(4), 469–476 (1975)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Markina, M., Buzdalov, M.: Hybridizing non-dominated sorting algorithms: divide-and-conquer meets best order sort. In: Proceedings of Genetic and Evolutionary Computation Conference Companion, pp. 153–154 (2017)Google Scholar
  16. 16.
    McClymont, K., Keedwell, E.: Deductive sort and climbing sort: new methods for non-dominated sorting. Evol. Comput. 20(1), 1–26 (2012)CrossRefGoogle Scholar
  17. 17.
    Nekrich, Y.: A fast algorithm for three-dimensional layers of maxima problem. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 607–618. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22300-6_51CrossRefGoogle Scholar
  18. 18.
    Roy, P.C., Islam, M.M., Deb, K.: Best Order Sort: a new algorithm to non-dominated sorting for evolutionary multi-objective optimization. In: Proceedings of Genetic and Evolutionary Computation Conference Companion, pp. 1113–1120 (2016)Google Scholar
  19. 19.
    Schlünz, E.B.: Multiobjective in-core fuel management optimisation for nuclear research reactors. Ph.D. thesis, Stellenbosch University, December 2016Google Scholar
  20. 20.
    Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)CrossRefGoogle Scholar
  21. 21.
    Stevens, J., Smith, K., Rempe, K., Downar, T.: Optimization of pressurized water reactor shuffling by simulated annealing with heuristics. Nucl. Sci. Eng. 121(1), 67–88 (1995)CrossRefGoogle Scholar
  22. 22.
    Wang, H., Yao, X.: Corner sort for pareto-based many-objective optimization. IEEE Trans. Cybern. 44(1), 92–102 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  24. 24.
    Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 19(2), 201–213 (2015)CrossRefGoogle Scholar
  25. 25.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30217-9_84CrossRefGoogle Scholar
  26. 26.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the EUROGEN 2001 Conference, pp. 95–100 (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.ITMO UniversitySaint-PetersburgRussia

Personalised recommendations