Advertisement

New Initialisation Techniques for Multi-objective Local Search

Application to the Bi-objective Permutation Flowshop
  • Aymeric Blot
  • Manuel López-Ibáñez
  • Marie-Éléonore Kessaci
  • Laetitia Jourdan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11101)

Abstract

Given the availability of high-performing local search (LS) for single-objective (SO) optimisation problems, a successful approach to tackle their multi-objective (MO) counterparts is scalarisation-based local search (SBLS). SBLS strategies solve multiple scalarisations, aggregations of the multiple objectives into a single scalar value, with varying weights. They have been shown to work specially well as the initialisation phase of other types of MO local search, e.g., Pareto local search (PLS). A drawback of existing SBLS strategies is that the underlying SO-LS method is unaware of the MO nature of the problem and returns only a single solution, discarding any intermediate solutions that may be of interest. We propose here two new SBLS initialisation strategies (ChangeRestart and ChangeDirection) that overcome this drawback by augmenting the underlying SO-LS method with an archive of nondominated solutions used to dynamically update the scalarisations. The new strategies produce better results on the bi-objective permutation flowshop problem than other five SBLS strategies from the literature, not only on their own but also when used as the initialisation phase of PLS.

Keywords

Flowshop scheduling Local search Heuristics Multi-objective optimisation Combinatorial optimisation 

References

  1. 1.
    Blot, A., Jourdan, L., Kessaci-Marmion, M.E.: Automatic design of multi-objective local search algorithms: case study on a bi-objective permutation flowshop scheduling problem. In: GECCO 2017, pp. 227–234. ACM Press (2017)Google Scholar
  2. 2.
    Drugan, M.M., Thierens, D.: Path-guided mutation for stochastic Pareto local search algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 485–495. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15844-5_49CrossRefGoogle Scholar
  3. 3.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP\(+\)PLS algorithm for bi-objective flow-shop scheduling problems. COR 38(8), 1219–1236 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Improving the anytime behavior of two-phase local search. AMAI 61(2), 125–154 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Combining two search paradigms for multi-objective optimization: two-phase and Pareto local search. In: Talbi, E.G. (ed.) Hybrid Metaheuristics, vol. 434, pp. 97–117. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-30671-6_3CrossRefGoogle Scholar
  6. 6.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime Pareto local search. EJOR 243(2), 369–385 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.G.: On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems. JOH 18(2), 317–352 (2011)zbMATHGoogle Scholar
  8. 8.
    Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. ITOR 19(4), 495–520 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: an experimental study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. LNMES, vol. 535, pp. 177–200. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-642-17144-4_7CrossRefGoogle Scholar
  10. 10.
    Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling salesman problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 479–493. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36970-8_34CrossRefGoogle Scholar
  11. 11.
    Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective combinatorial optimization: a review. In: Handbook of Approximation Algorithms and Metaheuristics, pp. 29-1–29-15. Chapman & Hall/CRC (2007)Google Scholar
  12. 12.
    Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. EJOR 177(3), 2033–2049 (2007)CrossRefGoogle Scholar
  13. 13.
    Taillard, É.D.: Benchmarks for basic scheduling problems. EJOR 64(2), 278–285 (1993)CrossRefGoogle Scholar
  14. 14.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE TEC 11(6), 712–731 (2007)Google Scholar
  15. 15.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE TEC 7(2), 117–132 (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Aymeric Blot
    • 1
  • Manuel López-Ibáñez
    • 2
  • Marie-Éléonore Kessaci
    • 1
  • Laetitia Jourdan
    • 1
  1. 1.Université de Lille, CNRS, UMR 9189 – CRIStALLilleFrance
  2. 2.Alliance Manchester Business SchoolUniversity of ManchesterManchesterUK

Personalised recommendations