Heavy-Tailed Mutation Operators in Single-Objective Combinatorial Optimization

  • Tobias Friedrich
  • Andreas GöbelEmail author
  • Francesco Quinzan
  • Markus Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11101)


A core feature of evolutionary algorithms is their mutation operator. Recently, much attention has been devoted to the study of mutation operators with dynamic and non-uniform mutation rates. Following up on this line of work, we propose a new mutation operator and analyze its performance on the (1+1) Evolutionary Algorithm (EA). Our analyses show that this mutation operator competes with pre-existing ones, when used by the (1+1) EA on classes of problems for which results on the other mutation operators are available. We present a “jump” function for which the performance of the (1+1) EA using any static uniform mutation and any restart strategy can be worse than the performance of the (1+1) EA using our mutation operator with no restarts. We show that the (1+1) EA using our mutation operator finds a (1/3)-approximation ratio on any non-negative submodular function in polynomial time. This performance matches that of combinatorial local search algorithms specifically designed to solve this problem.

Finally, we evaluate experimentally the performance of the (1+1) EA using our operator, on real-world graphs of different origins with up to \(\sim \)37 000 vertices and \(\sim \)1.6 million edges. In comparison with uniform mutation and a recently proposed dynamic scheme our operator comes out on top on these instances.


Mutation operators Minimum vertex cover problem Submodular functions maximization 



The authors would like to thank Martin Krejca for giving his advice on one of the proofs, and Karen Seidel for proof-reading the paper.


  1. 1.
    Ageev, A.A., Sviridenko, M.: An 0.828-approximation algorithm for the uncapacitated facility location problem. Discrete Appl. Math. 93(2–3), 149–156 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing monotonic functions. Evol. Comput. 21(1), 1–27 (2013)CrossRefGoogle Scholar
  3. 3.
    Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: GECCO, pp. 777–784 (2017)Google Scholar
  4. 4.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoret. Comput. Sci. 276(1–2), 51–81 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)CrossRefGoogle Scholar
  6. 6.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Natural Computing Series. Springer, Heidelberg (2003). Scholar
  7. 7.
    Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. Evol. Comput. 18(4), 617–633 (2010)CrossRefGoogle Scholar
  9. 9.
    Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid constraints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015)CrossRefGoogle Scholar
  10. 10.
    Friedrich, T., Quinzan, F., Wagner, M.: Escaping large deceptive basins of attraction with heavy mutation operators. In: GECCO (2018, accepted).
  11. 11.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jansen, T., Wegener, I.: Real royal road functions-where crossover provably is essential. Discrete Appl. Math. 149(1–3), 111–125 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Krause, A., Guestrin, C.: Near-optimal observation selection using submodular functions. In: AAAI, pp. 1650–1654 (2007)Google Scholar
  15. 15.
    Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: STOC, pp. 323–332 (2009)Google Scholar
  16. 16.
    Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55(2), 270–296 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: PPSN, pp. 15–26 (1992)Google Scholar
  18. 18.
    Rossi, R.A., Ahmed, N.K.: The Network Data Repository with Interactive Graph Analytics and Visualization (Website) (2015).
  19. 19.
    Wagner, M., Friedrich, T., Lindauer, M.: Improving local search in a minimum vertex cover solver for classes of networks. In: CEC, pp. 1704–1711 (2017)Google Scholar
  20. 20.
    Wegener, I.: Theoretical aspects of evolutionary algorithms. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 64–78. Springer, Heidelberg (2001). Scholar
  21. 21.
    Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 44–56. Springer, Heidelberg (2005). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tobias Friedrich
    • 1
    • 2
  • Andreas Göbel
    • 1
    Email author
  • Francesco Quinzan
    • 1
  • Markus Wagner
    • 2
  1. 1.Hasso Plattner InstitutePotsdamGermany
  2. 2.University of AdelaideAdelaideAustralia

Personalised recommendations