Another Useful Four-Valued Logic

  • Zuoquan LinEmail author
  • Zhaocong Jia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11062)


We propose a four-valued logic with intuitive semantics by the connectives that is useful for understanding the contradictions in knowledge representation. The intuitive semantics reflects that any assertion has dual character by whose information for or against the judgment. The four-valued logic is weakly paraconsistent and has the weak consistency to capture whether or not the contradictions are reconcilable with information. The four-valued logic is a normal extension of classical logic in a sense that it contains the schemata of classical axioms. We then propose an axiomatization of the four-valued logic. The soundness and completeness of the axiomatization with respect to the semantics are proved. The usefulness of the four-valued logic is discussed.


Four-valued logic Bilattice Paraconsistency Weak consistency Conflation 


  1. 1.
    Anderson, A., Belnap, N.: Entailment: The Logic of Relevance and Necessity, vol. 1. Princeton University Press, Princeton (1975)zbMATHGoogle Scholar
  2. 2.
    Arieli, O., Avron, A.: The value of the four values. Artif. Intell. 102(1), 97–141 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Belnap Jr., N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multiple-Valued Logic, pp. 5–37. Springer, Dordrecht (1977). Scholar
  4. 4.
    van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Stud. Logica 99(1–3), 61–92 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bergstra, J.A., Bethke, I., Rodenburg, P.: A propositional logic with 4 values: true, false, divergent and meaningless. J. Appl. Non-Class. Log. 5(2), 199–217 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    De, M., Omori, H.: Classical negation and expansions of belnap-dunn logic. Stud. Logica 103(4), 825–851 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fitting, M.: Bilattices and the semantics of logic programming. J. Log. Prog. 11(2), 91–116 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Font, J.M., Moussavi, M.: Note on a six-valued extension of three-valued logic. J. Appl. Non-Class. Log. 3(2), 173–187 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Font, J.M.: Belnap’s four-valued logic and De Morgan lattices. Log. J. IGPL 5(3), 1–29 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ginsberg, M.L.: Multivalued logics: a uniform approach to reasoning in artificial intelligence. Comput. Intell. 4(3), 265–316 (1988)CrossRefGoogle Scholar
  11. 11.
    Rosser, J.B., Turquette, A.R.: Multiple-Valued Logics. North Holland, Amsterdam (1952)zbMATHGoogle Scholar
  12. 12.
    Kaluzhny, Y., Muravitsky, A.Y.: A knowledge representation based on the Belnap’s four-valued logic. J. Appl. Non-Class. Log. 3(2), 189–203 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Maruyama, Y.: Algebraic study of lattice-valued logic and lattice-valued modal logic. In: Ramanujam, R., Sarukkai, S. (eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 170–184. Springer, Heidelberg (2008). Scholar
  14. 14.
    Omori, H., Sano, K.: Generalizing functional completeness in Belnap-Dunn logic. Stud. Logica 103(5), 883–917 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pietz, A., Rivieccio, U.: Nothing but the truth. J. Philos. Log. 42(1), 125–135 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pynko, A.P.: Functional completeness and axiomatizability within Belnap’s four-valued logic and its expansions. J. Appl. Non-Class. Log. 9(1), 61–105 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ruet, P., Fages, F.: Combining explicit negation and negation by failure via Belnap’s logic. Theor. Comput. Sci. 171(1), 61–75 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tsoukias, A.: A first order, four-valued, weakly paraconsistent logic and its relation with rough sets semantics. Found. Comput. Decis. Sci. 27(2), 77–96 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Visser, A.: Four valued semantics and the liar. J. Philos. Log. 13(2), 181–212 (1984)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wintein, S., Muskens, R.: A calculus for Belnap’s logic in which each proof consists of two trees. Log. Anal. 220, 643–656 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Wintein, S., Muskens, R.: A gentzen calculus for nothing but the truth. J. Philos. Log. 45(4), 451–465 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Information Science, School of Mathematical SciencePeking UniversityBeijingChina

Personalised recommendations