Technology and Droop Study for High Internal Quantum Efficiency

  • Bo Shen
  • Zhizhong ChenEmail author
Part of the Solid State Lighting Technology and Application Series book series (SSLTA, volume 4)


Although the high efficiency above 300 lm/W is achieved for white LED in laboratory, the commercial LED approaches half of the maximum. Efficiency droop (ED) is still a serious problem for high-power applications. In this chapter, some techniques to achieve high internal quantum efficiency (IQE) for GaN-based LEDs are presented. The effects of defects and polarization are discussed in detail. The IQE of green and deep ultraviolet-LEDs are particularly concerned. In the IQE measurement, the general temperature-dependent photoluminescence method is analyzed, and some significant developments are introduced to obtain a more accurate value. The exact origins of ED are still on debates. We tend to attribute the droop to various origins for different situations. At last, we give some remedies to alleviate the droop. Radiative recombination rate enhancement may be more important for low-droop LEDs. Localized surface plasmon and nanocavity may be the potential candidates for novel low-droop devices.


  1. 1.
    Martin Strassburg (OSRAM), Perspectives of III-N optoelectronics, in International Workshop on Nitride Semiconductors (IWN2016), Orlando, USA, 2016Google Scholar
  2. 2.
    K.P. O’Donnell, M. Auf der Maur, A. Di Carlo, K. Lorenz, Phys. Status Solidi RRL 6(2), 49–52 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N.M. Johnson, M. Weyers, Semicond. Sci. Technol. 26(1), 014036 (2011)CrossRefGoogle Scholar
  4. 4.
    Y. Yamada, K. Iwamura, T. Kuronaka, T. N Shinomura, H. Taguchi, H. Kudo, J. Okagawa, Light Vis. Environ. 32(2), 191–195 (2008)CrossRefGoogle Scholar
  5. 5.
    N.F. Gardner, G.O. Müller, Y.C. Shen, G. Chen, S. Watanabe, W. Götz, M.R. Krames, Appl. Phys. Lett. 91, 243506 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Hader, J.V. Moloney, S.W. Koch, Proc. SPIE 8625, 86251M (2013)CrossRefGoogle Scholar
  7. 7.
    Q.Q. Jiao, Z.Z. Chen, J. Ma, S.Y. Wang, Y. Li, S. Jiang, Y.L. Feng, J.Z. Li, Y.F. Chen, T.J. Yu, S.F. Wang, G.Y. Zhang, P.F. Tian, E.Y. Xie, Z. Gong, E.D. Gu, M.D. Dawson, Opt. Exp. 23(13), 16565 (2015)CrossRefGoogle Scholar
  8. 8.
    S.D. Lester, F.A. Ponce, M.G. Craford, D.A. Steigerwald, Appl. Phys. Lett. 66, 1249 (1995)CrossRefGoogle Scholar
  9. 9.
    J.Y. Tsao, IEEE Circuits Devices Mag. 20(3), 28–37 (2005)CrossRefGoogle Scholar
  10. 10.
    M.J. Cich, R.I. Aldaz, A. Chakraborty, A. David, M.J. Grundmann, A. Tyagi, M. Zhang, F.M. Steranka, M.R. Krames, Appl. Phys. Lett. 101, 223509 (2012)CrossRefGoogle Scholar
  11. 11.
    Y. Sun, S. Qi, Z. Chen, X. Kang, G. Zhu, C. Chen, S. Li, Y. Pan, J. Yan, J. Deng, H. Long, M. Hao, T. Yu, G. Zhang, Phys. Stat. Sol. C 6(S2), S623 (2009)Google Scholar
  12. 12.
    J.S. Speck, M.A. Brewer, G. Beltz, A.E. Romanov, W. Pompe, J. Appl. Phys. 80, 3808 (1996)CrossRefGoogle Scholar
  13. 13.
    D.C. Reynolds, D.C. Look, B. Jogai, J.E. Hoelscher, J. Appl. Phys. 88, 1460 (2000)CrossRefGoogle Scholar
  14. 14.
    L. Gorgens, O. Ambacher, M. Stutzmann, C. Miskys, Appl. Phys. Lett. 76, 577 (2000)CrossRefGoogle Scholar
  15. 15.
    J.-Z. Li, T. Yue-Bin, C. Zhi-Zhong, J. Xian-Zhe, F. Xing-Xing, J. Shuang, J. Qian-Qian, Y. Tong-Jun, Z. Guo-Yi, Chin. Phys. B 23(1), 016101 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Amano, N. Sawaki, I. Akasaki, et al., Appl. Phys. Lett. 48, 353 (1986)CrossRefGoogle Scholar
  17. 17.
    S. Nakamura, Y. Harada, M. Sehno, Appl. Phys. Lett. 58, 2021 (1991)CrossRefGoogle Scholar
  18. 18.
    O.H. Nam, M.D. Bremser, T. Zheleva, R.F. Davis, Appl. Phys. Lett. 71, 2638 (1997)CrossRefGoogle Scholar
  19. 19.
    C.I.H. Ashby, C.C. Mitchell, J. Han, N.A. Missert, P.P. Provencio, D.M. Follstaedt, G.M. Peake, L. Griego, Appl. Phys. Lett. 77, 3233 (2000)CrossRefGoogle Scholar
  20. 20.
    K. Tadatomo, N. Okada, Proc. SPIE 7954, 795416 (2005)Google Scholar
  21. 21.
    M.T. Wang, K.Y. Liao, Y. Li, IEEE Photon. Technol. Lett. 23, 962–964 (2011)CrossRefGoogle Scholar
  22. 22.
    J.H. Cheng, Y.S. Wu, W.C. Liao, B.W. Lin, Appl. Phys. Lett. 96, 051109 (2010)CrossRefGoogle Scholar
  23. 23.
    X.H. Huang, J.P. Liu, Y.Y. Fan, J.J. Kong, H. Yang, H.B. Wang, IEEE Photon. Technol. Lett. 23, 944–946 (2011)CrossRefGoogle Scholar
  24. 24.
    J.J. Chen, Y.K. Su, C.L. Lin, S.M. Chen, W.L. Li, C.C. Kao, IEEE Photon. Technol. Lett. 20, 1193–1195 (2008)CrossRefGoogle Scholar
  25. 25.
    Y.F. Li, S. You, M.W. Zhu, L. Zhao, W.T. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, C. Wetzel, Appl. Phys. Lett. 98, 151102 (2011)CrossRefGoogle Scholar
  26. 26.
    Y.-K. Ee, X.-H. Li, et al., J. Cryst. Growth 312, 1311 (2010)CrossRefGoogle Scholar
  27. 27.
    J.Z. Li, Z.Z. Chen, Q.Q. Jiao, Y.L. Feng, S. Jiang, Y.F. Chen, T.J. Yu, S.F. Li, G.Y. Zhang, CrystEngComm 17, 4469 (2015)CrossRefGoogle Scholar
  28. 28.
    J.I. Pankove, J. Lumin. 7, 114 (1973)CrossRefGoogle Scholar
  29. 29.
    H. Amano, M. Kito, K. Hiramatsu, et al., Jpn. J. Appl. Phys. 28(12), L2112–L2114 (1989)CrossRefGoogle Scholar
  30. 30.
    S. Nakamura, T. Mukai, M. Sehno, Appl. Phys. Lett. 64(13), 1687–1689 (1994)CrossRefGoogle Scholar
  31. 31.
    J.-W. Ju, E.-S. Kang, H.-S. Kim, et al., J. Appl. Phys. 102, 053519 (2007)CrossRefGoogle Scholar
  32. 32.
    M.G. Cheong, R.J. Choi, E.-K. Suh, H.J. Lee, Appl. Phys. Lett. 82, 625–626 (2003)CrossRefGoogle Scholar
  33. 33.
    Y.B. Tao, Z.Z. Chen, F.F. Zhang, J. Appl. Phys. 107, 103529 (2010)CrossRefGoogle Scholar
  34. 34.
    G. Franssen, T. Suski, P. Perlin, Appl. Phys. Lett. 87, 041109 (2005)CrossRefGoogle Scholar
  35. 35.
    M.-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E. Fred Schuberta, J. Piprek, Y. Park, Appl. Phys. Lett. 91, 183507 (2007)CrossRefGoogle Scholar
  36. 36.
    J. Zhang, J. Yang, G. Simin, M. Shatalov, M. Asif Khan, Appl. Phys. Lett. 77, 2668–2670 (2000)CrossRefGoogle Scholar
  37. 37.
    B.A. Haskell, F. Wu, M.D. Craven, S. Matsuda, P.T. Fini, T. Fujii, K. Fujito, S.P. Den Baars, J.S. Speck, S. Nakamura, Appl. Phys. Lett. 84, 644 (2003)CrossRefGoogle Scholar
  38. 38.
    A. Chakraborty, B.A. Haskell, S. KELLER, J.S. Speck, S.P. Denbaars, S. Nakamura, U.K. Mishra, Jpn. J. Appl. Phys. 44, L173–L175 (2005)CrossRefGoogle Scholar
  39. 39.
    T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, S. Nakamura, Jpn. J. Appl. Phys. 44, L920–L922 (2005)CrossRefGoogle Scholar
  40. 40.
    K. Okamoto, A. Kaneta, Y. Kawakami, S. Fujita, J. Appl. Phys. 98, 064503 (2005)CrossRefGoogle Scholar
  41. 41.
    Y.D. Lin, A. Chakraborty, S. Brinkley, H.C. Kuo, T. Melo, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 94, 261108 (2009)CrossRefGoogle Scholar
  42. 42.
    H. Sato, A. Tyagi, H. Zhong, N. Fellows, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Phys. Stat. Sol. (RRL) 1(4), 162–164 (2007)CrossRefGoogle Scholar
  43. 43.
    S.E. Brinkley, Y.-D. Lin, A. Chakraborty, N. Pfaff, D. Cohen, J.S. Speck, S. Nakamura, S.P. DenBaars, Appl. Phys. Lett. 98, 011110 (2011)CrossRefGoogle Scholar
  44. 44.
    H. Sato, R.B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 92, 221110 (2008)CrossRefGoogle Scholar
  45. 45.
    F. Brunner, U. Zeimer, F. Edokam, W. John, D. Prasai, O. Krüger, M. Weyers, Phys. Status Solidi B 252, 1189 (2015)CrossRefGoogle Scholar
  46. 46.
    J. Bai, B. Xu, F.G. Guzman, K. Xing, Y. Gong, Y. Hou, T. Wang, Appl. Phys. Lett. 107, 261103 (2016)CrossRefGoogle Scholar
  47. 47.
    H. Li, M. Khoury, B. Bonef, A.I. Alhassan, A.J. Mughal, E. Azimah, M.E.A. Samsudin, P. De Mierry, S. Nakamura, J.S. Speck, S.P. DenBaars, ACS Appl. Mater. Interfaces 9(41), 36417–36422 (2017)CrossRefGoogle Scholar
  48. 48.
    S. Li, A. Waag, J. Appl. Phys. 111, 071101 (2012)CrossRefGoogle Scholar
  49. 49.
    H. Sekiguchi, K. Kishino, A. Kikuchi, Appl. Phys. Lett. 96, 231104 (2010)CrossRefGoogle Scholar
  50. 50.
    S.D. Hersee, X.Y. Sun, et al., J. Appl. Phys. 97, 124308 (2005)CrossRefGoogle Scholar
  51. 51.
    M.L. Kuo, Y.S. Kim, M.L. Hsieh, et al., Nano Lett. 11(2), 476–481 (2011)CrossRefGoogle Scholar
  52. 52.
    S. Neugebauer, S. Metzner, J. Blasing, F. Bertram, A. Dadgar, J. Christen, A. Strittmatter, Phys. Status Solidi B 253(1), 118 (2016)CrossRefGoogle Scholar
  53. 53.
    F. Akyol, D.N. Nath, S. Krishnamoorthy, P.S. Park, S. Rajan, Appl. Phys. Lett. 100, 111118 (2012)CrossRefGoogle Scholar
  54. 54.
    B.-C. Lin, K.-J. Chen, C.-H. Wang, C.-H. Chiu, Y.-P. Lan, C.-C. Lin, P.-T. Lee, M.-H. Shih, Y.-K. Kuo, H.-C. Kuo, Opt. Express 22(1), 463 (2014)CrossRefGoogle Scholar
  55. 55.
    C.H. Chen, S.J. Chang, Y.K. Su, I.E.E.E. Senior Member, G.C. Chi, J.K. Sheu, J.F. Chen, IEEE J. Sel. Topics Quantum Electron. 8(2), 284 (2002)CrossRefGoogle Scholar
  56. 56.
    I.H. Ho, G.B. Stringfellow, Appl. Phys. Lett. 69(18), 2701 (1996)CrossRefGoogle Scholar
  57. 57.
    Y. Arakawa, H. Sakaki, Appl. Phys. Lett. 40(11), 939–941 (1982)CrossRefGoogle Scholar
  58. 58.
    K. Tachibana, T. Someya, Y. Arakawa, R. Werner, A. Forchel, Appl. Phys. Lett. 75(17), 2605–2607 (1999)CrossRefGoogle Scholar
  59. 59.
    K. Tachibana, T. Someya, S. Ishida, Y. Arakawa, Appl. Phys. Lett. 76(22), 3212–3214 (2000)CrossRefGoogle Scholar
  60. 60.
    Y.L. Chang, J.L. Wang, F. Li, Z. Mi, Appl. Phys. Lett. 96, 013106 (2010)CrossRefGoogle Scholar
  61. 61.
    L. Jun-Lin, Z. Jian-Li, W. Guang-Xu, M. Chun-Lan, X. Long-Quan, D. Jie, Q. Zhi-Jue, W. Xiao-Lan, P. Shuan, Z. Chang-Da, W. Xiao-Ming, F. Wen-Qing, J. Feng-Yi, Chin. Phys. B 24(6), 067804 (2015)CrossRefGoogle Scholar
  62. 62.
    X.M. Wu, J.L. Liu, Z.J. Quan, C.B. Xiong, C.D. Zheng, J.L. Zhang, F.Y. Jiang, Appl. Phys. Lett. 104, 221101 (2014)CrossRefGoogle Scholar
  63. 63.
    Z.J. Quan, L. Wang, C.D. Zheng, J.L. Liu, F.Y. Jiang, J. Appl. Phys. 116, 183107 (2014)CrossRefGoogle Scholar
  64. 64.
    J.L. Zhang, C.B. Xiong, J.L. Liu, Z.J. Quan, L. Wang, F.Y. Jiang, Appl. Phys. A Mater. Sci. Process. 114, 1049 (2014)CrossRefGoogle Scholar
  65. 65.
    J.R. Sambles, G.W. Bradbery, F.Z. Yang, Contemp. Phys. 32(3), 173–183 (1991)CrossRefGoogle Scholar
  66. 66.
    K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Nat. Mater. 3, 601 (2004)CrossRefGoogle Scholar
  67. 67.
    D.M. Yeh, C.F. Huang, C.Y. Chen, Y.C. Lu, C.C. Yang, Nanotechnology 19, 345201 (2008)CrossRefGoogle Scholar
  68. 68.
    S. Jiang, Z. Hu, Z.Z. Chen, X.X. Fu, X.Z. Jiang, Q.Q. Jiao, T.J. Yu, G.Y. Zhang, Opt. Express 21(10), 12100–12110 (2013)CrossRefGoogle Scholar
  69. 69.
    J. Henson, E. Dimakis, J. DiMaria, R. Li, S. Minissale, L.D. Negro, T.D. Moustakas, R. Paiella, Opt. Express 18(20), 21322–21329 (2010)CrossRefGoogle Scholar
  70. 70.
    C.H. Lu, C.C. Lan, Y.L. Lai, Y.L. Li, C.P. Liu, Adv. Funct. Mater. 21(24), 4719–4723 (2011)CrossRefGoogle Scholar
  71. 71.
    S. Jiang, Z. Chen, F. Xingxing, Q. Jiao, Y. Feng, W. Yang, J. Ma, J. Li, S. Jiang, Y. Tongjun, G. Zhang, IEEE Photon. Technol. Lett. 27(13), 1363 (2015)CrossRefGoogle Scholar
  72. 72.
    M. Kneissl, A Brief Review of III-Nitride UV Emitter Technologies and Their Applications (Springer, Cham, 2016), pp. 1–25. CrossRefGoogle Scholar
  73. 73.
    M. Kneissl, T. Kolbe, C. Chua, et al., Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26, 014036 (2011)CrossRefGoogle Scholar
  74. 74.
    K. Ban, J.-i. Yamamoto, K. Takeda, K. Ide, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, Appl. Phys. Express 4, 052101 (2011)CrossRefGoogle Scholar
  75. 75.
    M.A. Khan, J.N. Kuzina, D.T. Olson, T. George, W.T. Pike, GaN/AlN digital alloy short-period superlattices by switched atomic layer metalorganic chemical vapor deposition. Appl. Phys. Lett. 63, 3470–3472 (1993)CrossRefGoogle Scholar
  76. 76.
    L.W. Sang, Z.X. Qin, G.Y. Zhang, et al., Appl. Phys. Lett. 93, 122104 (2008)CrossRefGoogle Scholar
  77. 77.
    P. Dong et al., Appl. Phys. Lett. 102, 241113 (2013)CrossRefGoogle Scholar
  78. 78.
    M. Conroy et al., J. Mater. Chem. C 3, 431–437 (2015)CrossRefGoogle Scholar
  79. 79.
    L. Zhang, F. Xu, J. Wang, C. He, W. Guo, M. Wang, B. Sheng, L. Lu, Z. Qin, X. Wang, B. Shen, Sci. Rep. 6, 35934 (2016)CrossRefGoogle Scholar
  80. 80.
    S. Kamiyama et al., J. Cryst. Growth 223, 83–91 (2001)CrossRefGoogle Scholar
  81. 81.
    J. Han et al., Appl. Phys. Lett. 78, 67–69 (2001)CrossRefGoogle Scholar
  82. 82.
    J.P. Zhang et al., Appl. Phys. Lett. 80, 3542–3544 (2002)CrossRefGoogle Scholar
  83. 83.
    M.A. Khan, M. Shatalov, H.P. Maruska, H.M. Wang, E. Kuokstis, Jpn. J. Appl. Phys. 44, 7191–7206 (2005)CrossRefGoogle Scholar
  84. 84.
    G. Zhang, B. Shen, Z. Chen, et al., Chin. Sci. Bull. 59(12), 1201–1218 (2014)CrossRefGoogle Scholar
  85. 85.
    Y. Yang, J. Liu, L. Liu, A. Anders, Appl. Phys. Lett. 106, 162102 (2015)CrossRefGoogle Scholar
  86. 86.
    T.C. Zheng, W. Lin, R. Liu, Sci. Rep. 6, 21897 (2016)CrossRefGoogle Scholar
  87. 87.
    A. Khan, K. Balakrishnan, T. Katona, Nat. Photonics 2, 77–84 (2008)CrossRefGoogle Scholar
  88. 88.
    Y. Lin, B. Liou, J. Chang, Y. Kuo, Proc. SPIE 8619, 86191V (2013)CrossRefGoogle Scholar
  89. 89.
    G. Yang, J. Chang, J. Wang, Q. Zhang, F. Xie, J. Xue, D. Yan, F. Wang, P. Chen, R. Zhang, Y. Zheng, Superlattice. Microst. 83, 1–8 (2015)CrossRefGoogle Scholar
  90. 90.
    Z. Min, L. Yang, C. Shengchang, T. Wu, X. Jintong, L. Xiangyang, W. Zhihao, F. Yanyan, D. Jiangnan, C. Changqing, Superlattice. Microst. 75, 63–71 (2014)CrossRefGoogle Scholar
  91. 91.
    A.Y. Yi, W. Naiyin, F. Guanghan, Z. Yong, Superlattice. Microst. 76, 149–155 (2014)CrossRefGoogle Scholar
  92. 92.
    W. Guo, F. Xu, Y. Sun, L. Lu, Z. Qin, T. Yu, X. Wang, B. Shen, Superlattice. Microst. 100, 941–946 (2016)CrossRefGoogle Scholar
  93. 93.
    T. Akasaka, H. Gotoh, T. Saito, T. Makimoto, Appl. Phys. Lett. 85, 3089 (2004)CrossRefGoogle Scholar
  94. 94.
    C.E. Martinez, N.M. Stanton, A.J. Kent, J. Appl. Phys. 98, 053509 (2005)CrossRefGoogle Scholar
  95. 95.
    Q. Dai, M.F. Schubert, M.H. Kim, J.K. Kim, E.F. Schubert, D.D. Koleske, M.H. Crawford, S.R. Lee, A.J. Fischer, G. Thaler, M.A. Banas, Appl. Phys. Lett. 94, 111109 (2009)CrossRefGoogle Scholar
  96. 96.
    M.F. Schubert, J. Xu, Q. Dai, F.W. Mont, J.K. Kim, E.F. Schubert, Appl. Phys. Lett. 94, 081114 (2009)CrossRefGoogle Scholar
  97. 97.
    C. Xu, T. Yu, J. Yan, Z. Yang, X. Li, Y. Tao, X. Fu, Z. Chen, G. Zhang, Phys. Status Solidi C 9(3–4), 757–760 (2012)CrossRefGoogle Scholar
  98. 98.
    T. Nakano, K. Kawakami, A.A. Yamaguchi, Proc. SPIE 9748, 97481W (2016)CrossRefGoogle Scholar
  99. 99.
    K. Kawakami, T. Nakano, A.A. Yamaguchi, Proc. SPIE 9748, 97480S (2016)CrossRefGoogle Scholar
  100. 100.
    A.A. Yamaguchi, Y. Mochizuki, M. Mizuta, Jpn. J. Appl. Phys. 39, 2402 (2000)CrossRefGoogle Scholar
  101. 101.
    K. Kojima, T. Ohtomo, K.-i. Ikemura, Y. Yamazaki, M. Saito, H. Ikeda, K. Fujito, S.F. Chichibu, J. Appl. Phys. 120, 015704 (2016)CrossRefGoogle Scholar
  102. 102.
    K. Kojima, H. Ikeda, K. Fujito, S.F. Chichibu, Appl. Phys. Lett. 111, 032111 (2017)CrossRefGoogle Scholar
  103. 103.
    G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, E. Zanoni, J. Appl. Phys. 114, 071101 (2013)CrossRefGoogle Scholar
  104. 104.
    Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Appl. Phys. Lett. 91, 141101 (2007)CrossRefGoogle Scholar
  105. 105.
    K.T. Delaney, P. Rinke, C.G. Van de Walle, Appl. Phys. Lett. 94(19), 191109 (2009)CrossRefGoogle Scholar
  106. 106.
    E. Kioupakis, P. Rinke, K.T. Delaney, C.G. Van de Walle, Appl. Phys. Lett. 98, 161107 (2011)CrossRefGoogle Scholar
  107. 107.
    A.S. Polkovnikov, G.G. Zegrya, Phys. Rev. B 58(7), 4039 (1998)CrossRefGoogle Scholar
  108. 108.
    J. Iveland, L. Martinelli, J. Peretti, J.S. Speck, C. Weisbuch, Phys. Rev. Lett. 110, 177406 (2013)CrossRefGoogle Scholar
  109. 109.
    K.J. Vampola, M. Iza, S. Keller, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 94(6), 061116 (2009)CrossRefGoogle Scholar
  110. 110.
    S. Hammersley, D. Watson-Parris, P. Dawson, M.J. Godfrey, T.J. Badcock, M.J. Kappers, C. McAleese, R.A. Oliver, C.J. Humphreys, J. Appl. Phys. 111, 083512 (2012)CrossRefGoogle Scholar
  111. 111.
    J. Hader, J.V. Moloney, S.W. Koch, Appl. Phys. Lett. 96(22), 221106 (2010)CrossRefGoogle Scholar
  112. 112.
    J. Xie, X. Ni, Q. Fan, R. Shimada, U. Ozgur, H. Morkoc, Appl. Phys. Lett. 93(12), 121107 (2008)CrossRefGoogle Scholar
  113. 113.
    D.sS. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E.F. Schubert, H. Shim, M.-H. Kim, C. Sone, Appl. Phys. Lett. 99(25), 251115 (2011)CrossRefGoogle Scholar
  114. 114.
    X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc¸, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, Appl. Phys. Lett. 97(3), 031110 (2010)CrossRefGoogle Scholar
  115. 115.
    X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc¸, and A. Matulionis, J. Appl. Phys. 108, 033112 (2010)CrossRefGoogle Scholar
  116. 116.
    M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M.D. Neumann, N. Esser, S. Fritze, H. Witte, J. Bläsing, A. Dadgar, A. Krost, Phys. Rev. B 90(7), 075203 (2014)CrossRefGoogle Scholar
  117. 117.
    K. Jarašiūnas, S. Nargelas, R. Aleksiejunas, S. Miasojedovas, M. Vengris, S. Okur, H. Morkoç, Ü. Özgür, C. Giesen, Ö. Tuna, M. Heuken, J. Appl. Phys. 113(10), 103701 (2013)CrossRefGoogle Scholar
  118. 118.
    N.I. Bochkareva, V.V. Voronenkov, R.I. Gorbunov, A.S. Zubrilov, Y.S. Lelikov, P.E. Latyshev, Y.T. Rebane, A.I. Tsyuk, Y.G. Shreter, Appl. Phys. Lett. 96(13), 133502 (2010)CrossRefGoogle Scholar
  119. 119.
    D.-S. Shin, D.-P. Han, J.-Y. Oh, J.-I. Shim, Appl. Phys. Lett. 100(15), 153506 (2012)CrossRefGoogle Scholar
  120. 120.
    A. David, M.J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010)CrossRefGoogle Scholar
  121. 121.
    J. Yun, H.-S. Yeom, J.-I. Shim, J. Korean Phys. Soc. 63(6), 1218–1221 (2013)CrossRefGoogle Scholar
  122. 122.
    X. Shao, H. Lu, D. Chen, Z. Xie, R. Zhang, Y. Zheng, Appl. Phys. Lett. 95, 163504 (2009)CrossRefGoogle Scholar
  123. 123.
    N.L. Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, M. Kneissl, Semicond. Sci. Technol. 28, 125021 (2013)CrossRefGoogle Scholar
  124. 124.
    N.F. Gardner, G.O. Müller, Y.C. Shen, et al., Appl. Phys. Lett. 91, 243506 (2007)CrossRefGoogle Scholar
  125. 125.
    C.S. Xia, Z.M. Simon Li, Z.Q. Li, Y. Sheng, Z.H. Zhang, W. Lu, L.W. Cheng, Appl. Phys. Lett. 100, 263504 (2012)CrossRefGoogle Scholar
  126. 126.
    J.-Y. Chang, F.-M. Chen, Y.-K. Kuo, Y.-H. Shih, J.-K. Sheu, W.-C. Lai, H. Liu, Opt. Lett. 38(16), 3158 (2013)CrossRefGoogle Scholar
  127. 127.
    X. Guo, E.F. Schubert, J. Appl. Phys. 90(8), 4191 (2001)CrossRefGoogle Scholar
  128. 128.
    C.-K. Li, Y.-R. Wu, IEEE Trans. Electron Devices 59(2), 400 (2012)CrossRefGoogle Scholar
  129. 129.
    I.V. Rozhansky, D.A. Zakheim, Phys. Status Solidi A 204(1), 227–230 (2007)CrossRefGoogle Scholar
  130. 130.
    T. Lu, S. Li, C. Liu, K. Zhang, Y. Xu, J. Tong, L. Wu, H. Wang, X. Yangs, Y. Yin, G. Xiao, Y. Zhou, Appl. Phys. Lett. 100(14), 141106 (2012)CrossRefGoogle Scholar
  131. 131.
    S.-C. Ling, T.-C. Lu, S.-P. Chang, J.-R. Chen, H.-C. Kuo, S.-C. Wang, Appl. Phys. Lett. 96, 231101 (2010)CrossRefGoogle Scholar
  132. 132.
    C.-H. Chiu, D.-W. Lin, C.-C. Lin, Z.-Y. Li, W.-T. Chang, H.-W. Hsu, H.-C. Kuo, T.-C. Lu, S.-C. Wang, W.-T. Liao, T. Tanikawa, Y. Honda, M. Yamaguchi, N. Sawaki, Appl. Phys. Express 4, 012105 (2011)CrossRefGoogle Scholar
  133. 133.
    A. Castiglia, D. Simeonov, H.J. Buehlmann, J.-F. Carlin, E. Feltin, J. Dorsaz, R. Butté, N. Grandjean, Appl. Phys. Lett. 90(3), 033514 (2007)CrossRefGoogle Scholar
  134. 134.
    Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I.M. Watson, E. Gu, M.D. Dawson, J. Appl. Phys. 107(1), 013103 (2010)CrossRefGoogle Scholar
  135. 135.
    Y.B. Tao, S.Y. Wang, Z.Z. Chen, Z. Gong, E.Y. Xie, Y.J. Chen, Y.F. Zhang, J. McKendry, D. Massoubre, E.D. Gu, B.R. Rae, R.K. Henderson, G.Y. Zhang, Phys. Status Solidi C 9(3–4), 616–619 (2012)CrossRefGoogle Scholar
  136. 136.
    P. Tian, J.J.D. McKendry, Z. Gong, B. Guilhabert, I.M. Watson, E. Gu, Z. Chen, G. Zhang, M.D. Dawson, Appl. Phys. Lett. 101(23), 231110 (2012)CrossRefGoogle Scholar
  137. 137.
    T.I. Kim, Y.H. Jung, J. Song, D. Kim, Y. Li, H.S. Kim, I.-S. Song, J.J. Wierer, H.A. Pao, Y. Huang, J.A. Rogers, Small 8(11), 1643–1649 (2012)CrossRefGoogle Scholar
  138. 138.
    N. Lobo Ploch, H. Rodriguez, C. Stölmacker, M. Hoppe, M. Lapeyrade, J. Stellmach, F. Mehnke, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, S. Einfeldt, M. Kneissl, IEEE Trans. Electron Devices 60(2), 782–786 (2013)CrossRefGoogle Scholar
  139. 139.
    H.P.T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G.A. Botton, Z. Mi, Nano Lett. 11, 1919 (2011)CrossRefGoogle Scholar
  140. 140.
    S. Zhang, Y. Li, S. Fathololoumi, H.P.T. Nguyen, Q. Wang, Z. Mi, Q. Li, G.T. Wang, AIP Adv. 3, 082103 (2013)CrossRefGoogle Scholar
  141. 141.
    Q. Li, K.R. Westlake, M.H. Crawford, S.R. Lee, D.D. Koleske, J.J. Figiel, K.C. Cross, Opt. Express 19(25), 25528 (2011)CrossRefGoogle Scholar
  142. 142.
    Q. Jiao, Z. Chen, Y. Feng, S. Li, S. Jiang, J. Li, Y. Chen, T. Yu, X. Kang, B. Shen, G. Zhang, Nanoscale Res. Lett. 11, 340 (2016)CrossRefGoogle Scholar
  143. 143.
    C.-F. Lu, C.-H. Liao, C.-Y. Chen, C. Hsieh, Y.-W. Kiang, C.C. Yang, Appl. Phys. Lett. 96, 261104 (2010)CrossRefGoogle Scholar
  144. 144.
    C.-H. Lin, C. Hsieh, C.C. Yang, et al., Opt. Express 23(S2), A842 (2014)CrossRefGoogle Scholar
  145. 145.
    C.-H. Lin, C.-Y. Su, Y. Kuo, C.-H. Chen, Y.-F. Yao, P.-Y. Shih, H.-S. Chen, C. Hsieh, Y.-W. Kiang, C.C. Yang, Appl. Phys. Lett. 105, 101106 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Peking UniversityBeijingChina

Personalised recommendations