Advertisement

GaN LEDs on Si Substrate

  • Fengyi JiangEmail author
  • Jianli Zhang
  • Qian Sun
  • Zhijue Quan
Chapter
Part of the Solid State Lighting Technology and Application Series book series (SSLTA, volume 4)

Abstract

Fabrication of GaN LEDs on Si is an attractive work but also with great challenge. One needs to overcome the huge difference in lattice parameter and thermal expansion coefficient between GaN and Si. With the help of substrate patterning and AlN/AlGaN buffer layer technologies, stress can be well controlled and high-quality crack-free GaN with low dislocation density are successfully grown. By strain engineering and utilizing V-defect in the active region, high-efficiency LED structure is developed. The chip fabrication process of LED on Si substrate is totally different from that on sapphire substrate that yields a vertical thin film device structure which has many unique features.

Keywords

Si substrate GaN Buffer layer Stress control Dislocation control V-defect High optical efficiency Yellow LED 

References

  1. 1.
    T.L. Chu, Gallium nitride films. J. Electrochem. Soc. 118(7), 1200–1203 (1971)CrossRefGoogle Scholar
  2. 2.
    F. Jiang, L. Wang, X. Wang, et al., High power InGaN-based blue LEDs grown on Si substrates by MOCVD. Abstract Book: The 8th International Conference on Nitride Semiconductors, vol. 1 (2009), pp. 82–83Google Scholar
  3. 3.
    A. Krost, A. Dadgar, GaN-based optoelectronics on Si substrates. Mater. Sci. Eng. B93, 77–84 (2002)CrossRefGoogle Scholar
  4. 4.
    H.P. Maruska, J.J. Tietjen, Preparation and properties of vapor-deposited single-crystalline GaN. Appl. Phys. Lett. 15, 327 (1969)CrossRefGoogle Scholar
  5. 5.
    T. Kozawa, T. Kachi, H. Kano, et al., Thermal-stress in GaN epitaxial layers grown on sapphire substrates. J. Appl. Phys. 77, 4389–4392 (1995)CrossRefGoogle Scholar
  6. 6.
    A. Dadgar, J. Bläsing, A. Diez, et al., Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness. Jpn. J. Appl. Phys. 39, L1183–L1185 (2000)CrossRefGoogle Scholar
  7. 7.
    F. Jiang, J. Liu, L. Wang, et al., High optical efficiency GaN based blue LED on Si substrate. Sci. Sin. Phys. Mech. Astron. 45, 067302 (2015)CrossRefGoogle Scholar
  8. 8.
    E. Butter, G. Fitzl, D. Hirsch, et al., The deposition of group III nitrides on Si substrates. Thin Solid Films 59, 25–31 (1979)CrossRefGoogle Scholar
  9. 9.
    H. Ishikawa, K. Yamamoto, T. Egawa, et al., Thermal stability of GaN on (1 1 1) Si substrate. J. Cryst. Growth 189–190(11), 178–182 (1998)CrossRefGoogle Scholar
  10. 10.
    T. Takeuchi, H. Amano, K. Hiramatsu, et al., Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer. J. Cryst. Growth 115(1–4), 634–638 (1991)CrossRefGoogle Scholar
  11. 11.
    N.P. Kobayashi, J.T. Kobayashi, P.D. Dapkus, et al., GaN growth on Si(111) substrate using oxidized AlAs as an intermediate layer. Appl. Phys. Lett. 71(24), 3569–3571 (1997)CrossRefGoogle Scholar
  12. 12.
    L. Wang, X. Liu, Y. Zan, et al., Wurtzite GaN epitaxial growth on a Si(001) substrate using γ-Al2O3 as an intermediate layer. Appl. Phys. Lett. 72(1), 109–111 (1998)CrossRefGoogle Scholar
  13. 13.
    J.H. Boo, C. Rohr, W. Ho, MOCVD of BN and GaN thin films on Si: new attempt of GaN growth with BN buffer layer. J. Cryst. Growth 189–190(1–2), 439–444 (1998)CrossRefGoogle Scholar
  14. 14.
    E. Calleja, M.A. Sánchez-García, F.J. Sánchez, et al., Growth of III-nitrides on Si(1 1 1) by molecular beam epitaxy Doping, optical, and electrical properties. J. Cryst. Growth 201(5), 296–317 (1999)CrossRefGoogle Scholar
  15. 15.
    A. Watanabe, T. Takeuchi, K. Hirosawa, et al., The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer. J. Cryst. Growth 128(1–4), 391–396 (1993)CrossRefGoogle Scholar
  16. 16.
    J.W. Yang, A. Lunev, G. Simin, et al., Selective area deposited blue GaN–InGaN multiple-quantum well light emitting diodes over Si substrates. Appl. Phys. Lett. 76(76), 273–275 (2000)CrossRefGoogle Scholar
  17. 17.
    S.A. Nikishin, N.N. Faleev, V.G. Antipov, et al., High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia. Appl. Phys. Lett. 1999(75), 2073–2075 (1999)CrossRefGoogle Scholar
  18. 18.
    M.A. Sanchez-Garcia, E. Calleja, E. Monroy, et al., The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(1 1 1). J. Cryst. Growth 183(1–2), 23–30 (1998)CrossRefGoogle Scholar
  19. 19.
    P. Chen, R. Zhang, Z.M. Zhao, et al., Growth of high quality GaN layers with AlN buffer on Si(1 1 1) substrates. J. Cryst. Growth 225(2–4), 150–154 (2001)CrossRefGoogle Scholar
  20. 20.
    A. Dadgar, M. Poschenrieder, J. Bläsing, et al., MOVPE growth of GaN on Si(111) substrates. J. Cryst. Growth 248(10), 556–562 (2003)CrossRefGoogle Scholar
  21. 21.
    H. Lahrèche, P. Vennéguès, O. Tottereau, et al., Optimisation of AlN and GaN growth by metalorganic vapour-phase epitaxy (MOVPE) on Si (1 1 1). J. Cryst. Growth 217(1–2), 13–25 (2000)CrossRefGoogle Scholar
  22. 22.
    S. Zamir, B. Meyler, E. Zolotoyabko, et al., The effect of AlN buffer layer on GaN grown on (1 1 1)-oriented Si substrates by MOCVD. J. Cryst. Growth 218(2–4), 181–190 (2000)CrossRefGoogle Scholar
  23. 23.
    R. Liu, F.A. Ponce, A. Dadgar, A. Krost, Atomic arrangement at the AlN/Si (111) interface. Appl. Phys. Lett. 83, 860 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Sakai, H. Sunakawa, A. Usui, Defect structure in selectively grown GaN films with low threading dislocation density. Appl. Phys. Lett. 71(16), 2259–2261 (1997)CrossRefGoogle Scholar
  25. 25.
    P. Kung, D. Walker, M. Hamilton, et al., Lateral epitaxial overgrowth of GaN films on sapphire and Si substrates. Appl. Phys. Lett. 74(4), 570–572 (1999)CrossRefGoogle Scholar
  26. 26.
    Y. Honda, Y. Kuroiwa, M. Yawaguchi, N. Sawaki, Growth of GaN free from cracks on a (111)Si substrate by selective metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 80, 222 (2002)CrossRefGoogle Scholar
  27. 27.
    A. Dadgar, M. Poschenrieder, A. Reiher, et al., Reduction of stress at the initial stages of GaN growth on Si(111). Appl. Phys. Lett. 82(1), 28–30 (2003)CrossRefGoogle Scholar
  28. 28.
    T.S. Zheleva, O.H. Nam, M.D. Bremser, et al., Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Appl. Phys. Lett. 71(17), 2472–2474 (1997)CrossRefGoogle Scholar
  29. 29.
    O.H. Nam, M.D. Bremser, T.S. Zheleva, et al., Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy. Appl. Phys. Lett. 71(18), 2638–2640 (1997)CrossRefGoogle Scholar
  30. 30.
    O. Contreras, F.A. Ponce, J. Christen, et al., Dislocation annihilation by Si delta-doping in GaN epitaxy on Si. Appl. Phys. Lett. 81(25), 4712–4714 (2002)CrossRefGoogle Scholar
  31. 31.
    Q. Sun, Y.S. Cho, I.H. Lee, J. Han, B.H. Kong, H.K. Cho, Appl. Phys. Lett. 93, 131912 (2008)CrossRefGoogle Scholar
  32. 32.
    D. Zhu et al., J. Appl. Phys. 109, 014502 (2011)CrossRefGoogle Scholar
  33. 33.
    A. Dadgar et al., Phys. Status Solidi C. 1583 (2003)Google Scholar
  34. 34.
    K. Cheng et al., J. Electron. Mater. 35, 592 (2006)CrossRefGoogle Scholar
  35. 35.
    B. Leung, J. Han, Q. Sun, Phys. Status Solidi C 11, 437 (2014)CrossRefGoogle Scholar
  36. 36.
    A.E. Romanov, J.S. Speck, Appl. Phys. Lett. 83, 2569 (2003)CrossRefGoogle Scholar
  37. 37.
    D.M. Follstaedt, S.R. Lee, A.A. Allerman, J.A. Floro, J. Appl. Phys. 105, 083507 (2009)CrossRefGoogle Scholar
  38. 38.
    B.A.B.A. Shuhaimi, H. Kawato, Y. Zhu, T. Egawa, J. Phys. Conf. Ser. 152, 012007 (2009)CrossRefGoogle Scholar
  39. 39.
    Y. Sun et al., Nat. Photon 10, 595 (2016)CrossRefGoogle Scholar
  40. 40.
    B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kapolnek, B.P. Keller, S.P. DenBaars, J.S. Speck, Appl. Phys. Lett. 68, 643 (1996)CrossRefGoogle Scholar
  41. 41.
    R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, D. Hommel, J. Appl. Phys. 93, 8918 (2003)CrossRefGoogle Scholar
  42. 42.
    D. Cherns, S.J. Henley, F.A. Ponce, Appl. Phys. Lett. 78, 2691 (2001)CrossRefGoogle Scholar
  43. 43.
    S.J. Rosner, E.C. Carr, M.J. Ludowise, G. Girolami, H.I. Erikson, Appl. Phys. Lett. 70, 420 (1997)CrossRefGoogle Scholar
  44. 44.
    S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. Denbaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akaki, J. Han, T. Sota, Nat. Mater. 5, 810 (2006)CrossRefGoogle Scholar
  45. 45.
    S. Nakamura, Science 281(14), 956 (1998)CrossRefGoogle Scholar
  46. 46.
    L.C. Le, D.G. Zhao, D.S. Jiang, L. Li, L.L. Wu, P. Chen, Z.S. Liu, Z.C. Li, Y.M. Fan, J.J. Zhu, Appl. Phys. Lett. 101, 252110 (2012)CrossRefGoogle Scholar
  47. 47.
    I.H. Kim, H.S. Park, Y.J. Park, et al., Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films. Appl. Phys. Lett. 73(12), 1634–1636 (1998)CrossRefGoogle Scholar
  48. 48.
    Y. Chen, T. Takeuchi, H. Amano, et al., Pit formation in GaInN quantum wells. Appl. Phys. Lett. 72(6), 710–712 (1998)CrossRefGoogle Scholar
  49. 49.
    H. Takahashi, A. Ito, T. Tanaka, et al., Effect of intentionally formed V-defects’ on the emission efficiency of GaInN single quantum well. Jpn. J. Appl. Phys. 39(6B), L569–L571 (2000)CrossRefGoogle Scholar
  50. 50.
    A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, P. Hinze, Phys. Rev. Lett. 95, 127402 (2005)CrossRefGoogle Scholar
  51. 51.
    C. Netzel, H. Bremers, L. Hoffmann, D. Fuhrmann, U. Rossow, A. Hangleiter, Phys. Rev. B 76, 155322 (2007)CrossRefGoogle Scholar
  52. 52.
    S. Tomiya, Y. Kanitani, S. Tanaka, T. Ohkubo, K. Hono, Appl. Phys. Lett. 98, 181904 (2011)CrossRefGoogle Scholar
  53. 53.
    J. Abell, T.D. Moustakas, Appl. Phys. Lett. 92, 091901 (2008)CrossRefGoogle Scholar
  54. 54.
    L.C. Le, D.G. Zhao, D.S. Jiang, L. Li, L.L. Wu, P. Chen, Z.S. Liu, J. Yang, X.J. Li, X.G. He, J.J. Zhu, H. Wang, S.M. Zhang, H. Yang, J. Appl. Phys. 114, 143706 (2013)CrossRefGoogle Scholar
  55. 55.
    J. Kim, Y.-H. Cho, D.-S. Ko, X.-S. Li, J.-Y. Won, E. Lee, S.-H. Park, J.-Y. Kim, S. Kim, Opt. Express 22(S3), A857–A866 (2014)CrossRefGoogle Scholar
  56. 56.
    Z. Fang, J. Appl. Phys. 106, 023517 (2009)CrossRefGoogle Scholar
  57. 57.
    J. Kim, J. Kim, Y. Tak, S. Chae, J.-Y. Kim, Y. Park, IEEE Electron Device Lett. 34(11), 1409 (2013)CrossRefGoogle Scholar
  58. 58.
    P.H. Weidlich, M. Schnedler, H. Eisele, R.E. Dunin-Borkowski, P. Ebert, Appl. Phys. Lett. 103, 142105 (2013)CrossRefGoogle Scholar
  59. 59.
    S.-H. Han, D.-Y. Lee, H.-W. Shim, J.W. Lee, D.-J. Kim, S. Yoon, Y.S. Kim, S.-T. Kim, Appl. Phys. Lett. 102, 251123 (2013)CrossRefGoogle Scholar
  60. 60.
    Y.-H. Cho, J.-Y. Kim, J. Kim, M.-B. Shim, S. Hwang, S.-H. Park, Y.-S. Park, S. Kim, Appl. Phys. Lett. 103, 261101 (2013)CrossRefGoogle Scholar
  61. 61.
    X. Wu, J. Liu, Z. Quan, C. Xiong, C. Zheng, J. Zhang, Q. Mao, F. Jiang, Appl. Phys. Lett. 104, 221101 (2014)CrossRefGoogle Scholar
  62. 62.
    Y. Li, F. Yun, X. Su, S. Liu, W. Ding, X. Hou, J. Appl. Phys. 116, 123101 (2014)CrossRefGoogle Scholar
  63. 63.
    Z. Quan, L. Wang, C. Zheng, J. Liu, F. Jiang, J. Appl. Phys. 116, 183107 (2014)Google Scholar
  64. 64.
    Z. Quan, J. Liu, F. Fang, G. Wang, F. Jiang, A new interpretation for performance improvement of high-efficiency vertical blue light-emitting diodes by InGaN/GaN superlattices. J. Appl. Phys. 118, 193102 (2015)CrossRefGoogle Scholar
  65. 65.
    X. Wu, J. Liu, F. Jiang, Hole injection from the sidewall of V-shaped pits into c-plane multiple quantum wells in InGaN light emitting diodes. J. Appl. Phys. 118, 164504 (2015)CrossRefGoogle Scholar
  66. 66.
    Z.J. Quan, J.L. Liu, F. Fang, et al., Opt. Quant. Electron. 48(3), 1–8 (2016)CrossRefGoogle Scholar
  67. 67.
    C.Y. Chang, H. Li, Y.T. Shih, T.C. Lu, Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells. Appl. Phys. Lett. 106, 091104 (2015)CrossRefGoogle Scholar
  68. 68.
    N. Okada, H. Kashihara, K. Sugimoto, Y. Yamada, K. Tadatomo, Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes. J. Appl. Phys. 117, 025708 (2015)CrossRefGoogle Scholar
  69. 69.
    C. Xiong, F. Jiang, W. Fang, L. Wang, C. Mo, H. Liu, The characteristics of Gan-based blue LED on Si substrate. J. Lumin. 122, 185–187 (2007)CrossRefGoogle Scholar
  70. 70.
    G. Wang, X. Tao, F. Feng, C. Xiong, J. Liu, M. Zhang, F. Jiang, Effects of Ni-assisted annealing on P-type contact resistivity of Gan-based LED films grown on Si(111) substrates. Acta Phys. Sin. 60(7), 078503 (2011)Google Scholar
  71. 71.
    F. Jiang, L. Wang, W. Fang, Semiconductor light-emitting device and method for making same. US patent. US7919784B1, Filed 26 Sept 2006 and Issued 5 Apr 2007 (2007)Google Scholar
  72. 72.
    T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBaars, S. Nakamura, Increase in the extraction efficiency of Gan-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 84(6), 855–857 (2004)CrossRefGoogle Scholar
  73. 73.
    Z. Yinhua, T. Yingwen, R. Jianping, J. Fengyi, Improvement for extraction efficiency of vertical Gan-based LED on Si substrate by photo-enhanced wet etching. Acta Opt. Sin. 29(1), 252–255 (2009)CrossRefGoogle Scholar
  74. 74.
    D. Li, M. Sumiya, S. Fuke, D. Yang, Q. Duanlin, Y. Suzuki, Y. Fukuda, Selective etching of Gan polar surface in potassium hydroxide solution studied by X-ray photoelectron spectroscopy. J. Appl. Phys. 90(8), 4219–4223 (2001)CrossRefGoogle Scholar
  75. 75.
    J.-O. Song, D.-S. Leem, S.-H. Kim, T.-Y. Seong, Formation of vanadium-based ohmic contacts to N-Gan. Korean J. Mater. Res. 13(9), 567–571 (2003)CrossRefGoogle Scholar
  76. 76.
    J. Liu, F. Feng, Y. Zhou, J. Zhang, F. Jiang, Stability of Al/Ti/Au contacts to N-polar N-Gan of Gan based vertical light emitting diode on Si substrate. Appl. Phys. Lett. 99(11), 111112 (2011)CrossRefGoogle Scholar
  77. 77.
    G.L. Martinez, M.R. Curiel, B.J. Skromme, R.J. Molnar, Surface recombination and sulfide passivation of Gan. J. Electron. Mater. 29(29), 325–331 (2000)CrossRefGoogle Scholar
  78. 78.
    M. Meneghini, L.R. Trevisanello, U. Zehnder, T. Zahner, U. Strauss, G. Meneghesso, E. Zanoni, High-temperature degradation of Gan LEDs related to passivation. IEEE Trans. Electron Dev. 53(12), 2981–2987 (2007)CrossRefGoogle Scholar
  79. 79.
    J. Liu, C. Qiu, Research of passivation and anti reflecting layer on Gan based blue LED on Si substrate. Acta Optica Sinica 30(10), 2978–2982 (2010)CrossRefGoogle Scholar
  80. 80.
    F. Jiang, J. Liu, L. Wang, Semiconductor light-emitting device with double-sided passivation. US Patent. US 2011/0001120 A1, Filed 25 Mar 2008 and Issued 13 May 2008 (2008)Google Scholar
  81. 81.
    F. Jiang, W. Liu, Y. Li, et al., Research on the junction-temperature characteristic of GaN light-emitting diodes on Si substrate. J. Lumin. 122–123(1), 693–695 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Fengyi Jiang
    • 1
    Email author
  • Jianli Zhang
    • 1
  • Qian Sun
    • 2
  • Zhijue Quan
    • 1
  1. 1.National Institute of LED on Si SubstrateNanchang UniversityNanchangChina
  2. 2.Suzhou Institute of Nano-Tech and Nano-BionicsSuzhouChina

Personalised recommendations