Advertisement

SiC Single Crystal Growth and Substrate Processing

  • Xiangang Xu
  • Xiaobo Hu
  • Xiufang Chen
Chapter
Part of the Solid State Lighting Technology and Application Series book series (SSLTA, volume 4)

Abstract

Silicon carbide (SiC) is the typical representative of the third-generation semiconductor materials. Due to the wide bandgap, high thermal conductivity, high saturated carrier mobility, high threshold breakdown electric field strength, and high chemical stability, it is an ideal substrate for the fabrication of power electronics and radio frequency devices operating at extreme environments, such as high temperature, high frequency, high power, and strong radiation. Therefore, SiC has extensive applications in white-light illumination, automobile electronic, radar communication, aeronautic and aerospace, and nuclear radiation. Since the 1990s, SiC has attracted much attention due to the breakthrough in SiC single crystal growth technology. Up to now, 6” SiC substrates are commercially available. In this chapter, we mainly introduce the SiC single crystal growth and substrate processing technologies. In Sect. 2.1, SiC material development history and single crystal growth method were described. In Sect. 2.2, the structure and properties of SiC were given. In Sect. 2.3, we focus on the SiC single crystal growth by PVT method. In Sect. 2.4, the formation mechanism of structural defects in SiC and how to control these defects were presented. In Sect. 2.5, the control of electrical behavior of SiC was discussed. In Sect. 2.6, the SiC substrate processing technology was introduced. We wish this chapter has the reference value for SiC crystal grower and substrate processing technician.

References

  1. 1.
    J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39, 1409 (1996)CrossRefGoogle Scholar
  2. 2.
    R. Han, X. Xu, X. Hu, et al., Development of bulk SiC single crystal grown by physical vapor transport method. Opt. Mater. 23, 415 (2003)CrossRefGoogle Scholar
  3. 3.
    J.J. Berzelius, Ann. Phys. Chem. Lpz. 1, 169 (1824)CrossRefGoogle Scholar
  4. 4.
    E.G. Acheson Production of artificial crystalline carbonaceous materials, carborundum. English Patent 17911 (1892)Google Scholar
  5. 5.
    H. Moissan, Étude du siliciure de carbone de la météorite de cañon diablo. C. R. Acad. Sci. 140, 405 (1905)Google Scholar
  6. 6.
    H.J. Round, Elect. World 19, 309 (1907)Google Scholar
  7. 7.
    W.F. Kmippenberg, Growth phenomena in silicon carbide. Philips Res. Rep. 18, 16 (1963)Google Scholar
  8. 8.
    Y.M. Tairov, V.F. Tsvetkov, General principles of growing large-size single crystals of various silicon carbide polytypes. J. Cryst. Growth 52, 146 (1981)CrossRefGoogle Scholar
  9. 9.
    A.R. Powell, J.J. Sumakeris, Y. Khlebnikov, et al., Bulk growth of large area SiC crystals. Mater. Sci. Forum 858, 5 (2016)CrossRefGoogle Scholar
  10. 10.
    D.H. Hofmann, M.H. Müller, Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals. Mater. Sci. Eng. B 61, 29 (1999)CrossRefGoogle Scholar
  11. 11.
    K. Danno, H. Saitoh, A. Seki, et al., High-speed growth of high-quality 4H-SiC bulk by solution growth using Si-Cr based melt. Mater. Sci. Forum 645, 13 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Kojima, Y. Tokuda, E. Makino, N. Sugiyama, et al., Developing technologies of SiC gas source growth method. Mater. Sci. Forum 858, 23 (2015)CrossRefGoogle Scholar
  13. 13.
    G.R. Fisher, P. Barnes, Toward a unified view of polytypism in silicon carbide. Philos. Mag. B 61, 217 (1990)CrossRefGoogle Scholar
  14. 14.
    R.P. Adrian, B.R. Larry, SiC materials-progress, status, and potential roadblocks. Proc. IEEE 90, 942 (2002)CrossRefGoogle Scholar
  15. 15.
    S.Y. Kaprov, Y.N. Makarov, M.S. Ramm, Simulation of sublimation growth of SiC single crystals. Phys. Status Solidi B 202, 201 (1997)CrossRefGoogle Scholar
  16. 16.
    M. Pons, E. Blanquet, J.M. Dedulle, Thermodynamic heat transfer and mass transport modeling of the sublimation growth of silicon carbide crystals. J. Electrochem. Soc. 143, 3727 (1996)CrossRefGoogle Scholar
  17. 17.
    M. Selder, L. Kadinski, Y. Makarov, et al., Global numerical simulation of heat and mass transfer for SiC bulk crystal growth by PVT. J. Cryst. Growth 211, 333 (2000)CrossRefGoogle Scholar
  18. 18.
    P. Pirouz, On micropipes and nanopipes in SiC and GaN. Philos. Mag. A 78, 727 (1998)CrossRefGoogle Scholar
  19. 19.
    F.C. Frank, Capillary equilibria of dislocated crystals. Acta Cryst 4, 407 (1951)CrossRefGoogle Scholar
  20. 20.
    S.I. Maximenko, P. Pirouz, T.S. Sudarshan, Open core dislocations and surface energy of SiC. Mater. Sci. Forum 527-529, 439 (2006)CrossRefGoogle Scholar
  21. 21.
    S.I. Weimin, M. Dudley, R. Glass, V. Tsvetkov, C.H. Carter Jr., Hollow-core screw dislocations in 6H-SiC single crystals: a test of Frank’s theory. J. Electron. Mater. 26, 128 (1997)CrossRefGoogle Scholar
  22. 22.
    P. Krishna, S.S. Jiang, A.R. Lang, An optical and X-ray topographic study of giant screw dislocations in silicon carbide. J. Cryst. Growth 71, 41 (1985)CrossRefGoogle Scholar
  23. 23.
    X.R. Huang, M. Dudley, V.M. Vetter, W. Huang, S. Wang, Direct evidence of micropipe-related pure superscrew dislocations in SiC. Appl. Phys. Lett. 74, 355 (1999)Google Scholar
  24. 24.
    X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, W. Si, C.H. Carter Jr., Superscrew dislocation contrast on synchrotron white-beam topographs: an accurate description of the direct dislocation image. J. Appl. Crystallogr. 32, 516 (1999)CrossRefGoogle Scholar
  25. 25.
    J. Heindl, W. Dorsch, H.P. Strunk, Dislocation content of micropipes in SiC. Phys. Rev. Lett. 80, 740 (1998)CrossRefGoogle Scholar
  26. 26.
    T.A. Kuhr, E.K. Sanchez, M. Skowronski, Hexagonal voids and the formation of micropipes during SiC sublimation growth. J. Appl. Phys. 89, 4625 (2001)CrossRefGoogle Scholar
  27. 27.
    R.C. Glass, D. Henshall, V.F. Tsvetkov, C.H. Carter Jr., SiC seeded crystal growth. Phys. Status Solidi A 202, 149 (1997)CrossRefGoogle Scholar
  28. 28.
    H. Shiomi, H. Kinoshita, T. Furusho, T. Hayashi, et al., Crystal growth of micropipe free 4H-SiC on 4H-SiC (0 3 -3 8) seed and high purity semi-insulating 6H-SiC. J. Cryst. Growth 292, 188 (2006)CrossRefGoogle Scholar
  29. 29.
    J. Li, O. Filip, B.M. Epelbaum, X. Xu, M. Bickermann, A. Winnacker, Growth of 4H-SiC on rhombohedral (0 1 -1 4) plane seeds. J. Cryst. Growth 308, 41 (2007)CrossRefGoogle Scholar
  30. 30.
    W.F. Knippenberg, Growth phenomena in silicon carbide. Philips Res. Rep. 18, 161 (1963)Google Scholar
  31. 31.
    T. Shiramomo, B. Gao, F. Mercier, S. Nishizawa, et al., Thermodynamical analysis of polytype stability during PVT growth of SiC using 2D nucleation theory. J. Cryst. Growth 352, 177 (2012)CrossRefGoogle Scholar
  32. 32.
    K. Kakimoto, B. Gao, T. Shiramomo, S. Nakano, S.I. Nishizawa, Thermodynamic analysis of SiC polytype growth by physical vapor transport method. J. Cryst. Growth 324, 78 (2011)CrossRefGoogle Scholar
  33. 33.
    N. Sugiyama, A. Okamoto, K. Okumura, T. Tani, N. Kamiya, Step structures and dislocations of SiC single crystals grown by modified lely method. J. Cryst. Growth 191, 84 (1998)CrossRefGoogle Scholar
  34. 34.
    Y. Nakano, T. Nakamura, A. Kamisawa, H. Takasu, Investigation of pits formed at oxidation on 4H-SiC. Mater. Sci. Forum 600–630, 377 (2009)Google Scholar
  35. 35.
    R. Singh, K.G. Irvine, D.C. Capell, J.T. Richmond, D. Berning, A.R. Hefner, Large area ultra-high voltage 4H-SiC p-i-n rectifiers. IEEE Trans. Electron. Devices 49, 2308 (2002)CrossRefGoogle Scholar
  36. 36.
    J. Zhang, P. Alexandrov, T. Burke, J.H. Zhao, 4H-SiC power bipolar junction transistor with a very low specific on-resistance of 2.9 mΩ cm2. IEEE Electron Device Lett. 27, 368 (2006)CrossRefGoogle Scholar
  37. 37.
    S. Ryu, A.K. Agarwal, R. Singh, J.W. Palmour, 1800V NPN bipolar junction transistors in 4H-SiC, 2001. IEEE Electron Device Lett. 22, 124 (2001)CrossRefGoogle Scholar
  38. 38.
    B. Nakamura, I. Tunjishima, S. Yamaguchi, T. Ito, et al., Ultrahigh quality silicon carbide single crystals. Nature 430, 1009 (2004)CrossRefGoogle Scholar
  39. 39.
    N. Ohtani, M. Katsuno, J. Takahashi, et al., Impurity incorporation kinetics during modified-lely growth of SiC. J. Appl. Phys. 83, 4487 (1998)CrossRefGoogle Scholar
  40. 40.
    K. Onoue, T. Nishikawa, M. Katsumo, et al., Nitrogen incorporation kinetics during the sublimation growth of 6H and 4H-SiC. Jpn. J. Appl. Phys. 35, 2240 (1996)CrossRefGoogle Scholar
  41. 41.
    S. Jang, T. Kimoto, H. Matsunami, Deep levels in 6H-SiC wafers and step controlled epitaxial layers. Appl. Phys. Lett. 65, 581 (1994)CrossRefGoogle Scholar
  42. 42.
    A.O. Evwaraye, S.R. Smith, W.C. Mitchel, Shallow and deep levels in n-type 4H-SiC. J. Appl. Phys. 79, 7726 (1996)CrossRefGoogle Scholar
  43. 43.
    M. Katsuno, M. Nakabayashi, T. Fujimoto, et al., Stacking fault formation in highly nitrogen-doped 4H-SiC substrates with different surface preparation conditions. Mater. Sci. Forum 600-630, 341 (2009)Google Scholar
  44. 44.
    N. Ohtani, M. Katsuno, M. Nakabayashi, et al., Investigation of heavily nitrogen-doped n+ 4H-SiC crystals grown by physical vapor transport. J. Cryst. Growth 311, 1475 (2009)CrossRefGoogle Scholar
  45. 45.
    T. Kato, K. Eto, S. Takagi, T. Miura, et al., Growth of low resistivity n-type 4H-SiC bulk crystals by sublimation method using co-doping technique. Mater. Sci. Forum 778-780, 47 (2014)CrossRefGoogle Scholar
  46. 46.
    N. Schulze, J. Gajowski, K. Semmelroth, M. Laube, G. Pensl, Growth of highly aluminum-doped p-type 6H-SiC single crystals by the modified lely method. Mater. Sci. Forum 353-356, 45 (2001)CrossRefGoogle Scholar
  47. 47.
    P. Hens, U. Kunecke, P. Wellmann, Aluminum p-type doping of bulk SiC single crystals by tri-methyl-aluminum. Mater. Sci. Forum 600-603, 19 (2009)CrossRefGoogle Scholar
  48. 48.
    K. Eto, H. Suo, T. Kato, H. Okumura, Growth of low resistivity p-type 4H-SiC crystals by sublimation with using aluminum and nitrogen co-doping. Mater. Sci. Forum 858, 77 (2015)CrossRefGoogle Scholar
  49. 49.
    J. Schneider, H.D. Muller, M. Maier, W. Wilkening, F. Fuchs, Infrared spectra and electron spin resonance of vanadium deep level impurities in silicon carbide. Appl. Phys. Lett. 56, 1184 (1990)CrossRefGoogle Scholar
  50. 50.
    M. Bickermann, R. Weingartner, A. Winnacker, On the preparation of vanadium doped PVT grown SiC boules with high semi-insulating yield. J. Cryst. Growth 254, 390 (2003)CrossRefGoogle Scholar
  51. 51.
    G. Augustine, V. Balakrishna, C.D. Brandt, Growth and characterization of high purity SiC single crystals. J. Cryst. Growth 211, 339 (2000)CrossRefGoogle Scholar
  52. 52.
    J.R. Jenny, S. Muller, A. Powell, V.F. Tsvetkov, et al., High purity semi-insulating 4H-SiC grown by the seeded sublimation method. J. Electron. Mater. 31, 366 (2002)CrossRefGoogle Scholar
  53. 53.
    J.R. Jenny, D.P. Malta, S. Muller, et al., High purity semi-insulating 4H-SiC for microwave device applications. J. Electron. Mater. 32, 432 (2003)CrossRefGoogle Scholar
  54. 54.
    T. Sasaki, T. Matsuoka, Substrate-polarity dependence of metal-organic vapor-phase epitaxy-grown GaN on SiC. J. Appl. Phys. 64, 4531 (1988)CrossRefGoogle Scholar
  55. 55.
    P. Kung, C.J. Sun, A. Saxler, H. Ohsato, M. Razeghi, Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates. J. Appl. Phys. 75, 4515 (1994)CrossRefGoogle Scholar
  56. 56.
    S. Yu, S. Karpov, A.V. Kulik, I.A. Zhmakin, Y.N. Makarov, et al., Analysis of sublimation growth of bulk SiC crystals in tantalum container. J. Cryst. Growth 211, 347 (2000)CrossRefGoogle Scholar
  57. 57.
    N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, et al., Growth of large high-quality SiC single crystals. J. Cryst. Growth 237–239, 1180 (2002)CrossRefGoogle Scholar
  58. 58.
    W.I. Clark, A.J. Shih, C.W. Hardin, R.I. Lemaster, et al., Fixed abrasive diamond wire machining—part I: process monitoring and wire tension force. Int J Mach Tool Manu 43, 523 (2003)CrossRefGoogle Scholar
  59. 59.
    H.K. Xu, S. Jahanmir, L.K. Ives, Material removal and damage formation mechanisms in grinding silicon nitride. J. Mater. Res. 11, 1717 (1996)CrossRefGoogle Scholar
  60. 60.
    M. Forsberg, N. Keskitalo, J. Olsson, Effect of dopants on chemical mechanical polishing of silicon. Microelectron. Eng. 60, 149 (2002)CrossRefGoogle Scholar
  61. 61.
    Z. Zhong, Surface finish of precision machined advanced materials. J. Mater. Process. Technol. 122, 173 (2002)CrossRefGoogle Scholar
  62. 62.
    M. Jiang, R. Komanduri, On the finishing of Si3N4 balls for bearing applications. Wear 215, 267 (1998)CrossRefGoogle Scholar
  63. 63.
    P. Vicente, D. David, J. Camassel, Raman scattering as a probing method of subsurface damage in SiC. Mater. Sci. Eng. B 80, 348 (2001)CrossRefGoogle Scholar
  64. 64.
    M. Jiang, N.O. Wood, R. Komanduri, On chemo-mechanical polishing (CMP) of silicon nitride (Si3N4) workmaterial with various abrasives. Wear 220, 59 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina

Personalised recommendations