Advertisement

Nitride Nanowires for Light Emitting Diodes

  • Nan Guan
  • Xing Dai
  • François H. Julien
  • Joël Eymery
  • Christophe Durant
  • Maria TchernychevaEmail author
Chapter
Part of the Solid State Lighting Technology and Application Series book series (SSLTA, volume 4)

Abstract

This chapter describes the present status of nitride nanowire (NW) light emitting diodes (LEDs). The main focus is on the NW synthesized by a bottom-up approach. NW growth methods are described and the device processing is presented. Different realizations of NW LEDs are reviewed, grouped by their spectral domain and the targeted applications. Existing challenges of NW technology for LEDs are analyzed. New functionalities offered by the NW geometry are described, namely the use of NWs to create mechanically flexible light sources.

Keywords

Light emitting diode Nanowire Nitride Visible light emitters Mechanical flexibility 

Notes

Acknowledgements

The authors acknowledge fruitful discussions with V. Consonni and A. V. Maslov.

This work has been partially financially supported by ANR “Investissement d’Avenir” programmes “GaNeX” (ANR-11-LABX-2014) and “NanoSaclay” (ANR-10-LABX-0035), by ANR-14-CE26-0020-01 project “PLATOFIL,”, by EU ERC project “NanoHarvest” (grant no. 639052), and FP7 ITN Marie Curie project “INDEED” (grant no. 722176).

References

  1. 1.
    S. Nakamura, T. Mukai, M. Senoh, Candela- class high- brightness InGaN/AlGaN double- heterostructure blue- light- emitting diodes. Appl. Phys. Lett. 64, 1687 (1994)CrossRefGoogle Scholar
  2. 2.
    J. Iveland, L. Martinelli, J. Peretti, J.S. Speck, C. Weisbuch, Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013)CrossRefGoogle Scholar
  3. 3.
    E. Kioupakis, P. Rinke, K.T. Delaney, C.G. Van de Walle, Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98, 161107 (2011)CrossRefGoogle Scholar
  4. 4.
    C.I. Ashby, C.C. Mitchell, J. Han, N.A. Missert, P.P. Provencio, D.M. Follstaedt, G.M. Peake, L. Griego, Low-dislocation-density GaN from a single growth on a textured substrate. Appl. Phys. Lett. 77, 3233 (2000)CrossRefGoogle Scholar
  5. 5.
    Z. Li-Xia, Y. Zhi-Guo, S. Bo, Z. Shi-Chao, A. Ping-Bo, Y. Chao, L. Lei, W. Jun-Xi, L. Jin-Min, Progress and prospects of GaN-based LEDs using nanostructures. Chin. Phys. B 24, 068506 (2015)CrossRefGoogle Scholar
  6. 6.
    L.-W. Jang et al., Enhanced light output of InGaN/GaN blue light emitting diodes with Ag nanoparticles embedded in nano-needle layer. Opt. Express 20, 6036 (2012)CrossRefGoogle Scholar
  7. 7.
    Q. Li et al., Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays. Opt. Express 19, 25528 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Latzel, P. Büttner, G. Sarau, K. Höflich, M. Heilmann, W. Chen, X. Wen, G. Conibeer, S. Christiansen, Significant performance enhancement of InGaN/GaN nanorod LEDs with multilayer graphene transparent electrodes by alumina surface passivation. Nanotechnology 28, 055201 (2016)CrossRefGoogle Scholar
  9. 9.
    J.-H. Park, U. Chatterjee, S. Kang, K. Lee, J.-S. Kim, C.-R. Lee, Synthesis of hybrid nanowires comprising uniaxial and coaxial InGaN/GaN MQWs with a nano-cap. J. Mater. Chem. C 4, 10005 (2016)CrossRefGoogle Scholar
  10. 10.
    J.R. Riley, S. Padalkar, Q. Li, P. Lu, D.D. Koleske, J.J. Wierer, G.T. Wang, L.J. Lauhon, Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array. Nano Lett. 13, 4317 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.-J. Li, J.-R. Chang, S.-P. Chang, B.-W. Lin, Y.-H. Yeh, H.-C. Kuo, Y.-J. Cheng, C.-Y. Chang, Multifacet microrod light-emitting diode with full visible spectrum emission. J. Disp. Technol. 12, 951 (2016)CrossRefGoogle Scholar
  12. 12.
    S.D. Hersee, A.K. Rishinaramangalam, M.N. Fairchild, L. Zhang, P. Varangis, Threading defect elimination in GaN nanowires. J. Mater. Res. 26, 2293 (2011)CrossRefGoogle Scholar
  13. 13.
    Y.H. Ko, J.H. Kim, L.H. Jin, S.M. Ko, B.J. Kwon, J. Kim, T. Kim, Y.H. Cho, Electrically driven quantum dot/wire/well hybrid light- emitting diodes. Adv. Mater. 23, 5364 (2011)CrossRefGoogle Scholar
  14. 14.
    J. Kang, Z. Li, H. Li, Z. Liu, X. Li, X. Yi, P. Ma, H. Zhu, G. Wang, Pyramid array InGaN/GaN core–shell light emitting diodes with homogeneous multilayer graphene electrodes. Appl. Phys. Express 6, 072102 (2013)CrossRefGoogle Scholar
  15. 15.
    W. Chen et al., High-performance, single-pyramid micro light-emitting diode with leakage current confinement layer. Appl. Phys. Express 8, 032102 (2015)CrossRefGoogle Scholar
  16. 16.
    T. Kim, J. Kim, M.-S. Yang, S. Lee, Y. Park, U.-I. Chung, Y. Cho, Highly efficient yellow photoluminescence from {11–22} InGaN multiquantum-well grown on nanoscale pyramid structure. Appl. Phys. Lett. 97, 241111 (2010)CrossRefGoogle Scholar
  17. 17.
    T. Wernicke et al., Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells. Semicond. Sci. Technol. 27, 024014 (2012)CrossRefGoogle Scholar
  18. 18.
    K. Wu et al., Fabrication and optical characteristics of phosphor-free InGaN nanopyramid white light emitting diodes by nanospherical-lens photolithography. J. Appl. Phys. 115, 123101 (2014)CrossRefGoogle Scholar
  19. 19.
    K. Kishino, A. Kikuchi. III nitride structure and method for manufacturing III nitride semiconductor fine columnar crystal, (Google Patents, 2014).Google Scholar
  20. 20.
    J. Hartmann et al., High aspect ratio GaN fin microstructures with nonpolar sidewalls by continuous mode metalorganic vapor phase epitaxy. Cryst. Growth Des. 16, 1458 (2016)CrossRefGoogle Scholar
  21. 21.
    A.K. Rishinaramangalam, M. Nami, M.N. Fairchild, D.M. Shima, G. Balakrishnan, S. Brueck, D.F. Feezell, Semipolar InGaN/GaN nanostructure light-emitting diodes on c-plane sapphire. Appl. Phys. Express 9, 032101 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Hartmann et al., Study of 3D-growth conditions for selective area MOVPE of high aspect ratio GaN fins with non-polar vertical sidewalls. J. Cryst. Growth 476, 90 (2017)CrossRefGoogle Scholar
  23. 23.
    F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in freestanding nanowires. Phys. Rev. B 74, 121302 (2006)CrossRefGoogle Scholar
  24. 24.
    P. Coulon, M. Mexis, M. Teisseire, M. Jublot, P. Vennéguès, M. Leroux, J. Zuniga-Perez, Dual-polarity GaN micropillars grown by metalorganic vapour phase epitaxy: Cross-correlation between structural and optical properties. J. Appl. Phys. 115, 153504 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Li, A. Waag, GaN based nanorods for solid state lighting. J. Appl. Phys. 111, 5 (2012)Google Scholar
  26. 26.
    S. Boubanga-Tombet, J.B. Wright, P. Lu, M.R. Williams, C. Li, G.T. Wang, R.P. Prasankumar, Ultrafast carrier capture and Auger recombination in single GaN/InGaN multiple quantum well nanowires. ACS Photon. 3, 2237 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Djavid, Z. Mi, Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl. Phys. Lett. 108, 051102 (2016)CrossRefGoogle Scholar
  28. 28.
    Y.-H. Hsiao, M.-L. Tsai, J.-H. He, GaN-based multiple-quantum-well light-emitting diodes employing nanotechnology for photon management. IEEE Trans. Ind. Appl. 51, 1277 (2015)CrossRefGoogle Scholar
  29. 29.
    T. Schimpke et al., Phosphor- converted white light from blue- emitting InGaN microrod LEDs. Phys. Status Solidi A 213, 1577 (2016)CrossRefGoogle Scholar
  30. 30.
    H.-W. Lin et al., InGaN/GaN nanorod array white light-emitting diode. Appl. Phys. Lett. 97, 073101 (2010)CrossRefGoogle Scholar
  31. 31.
    B. Monemar, B.J. Ohlsson, N.F. Gardner, L. Samuelson, Chapter seven-nanowire-based visible light emitters, present status and outlook. Semicond. Semimetals 94, 227 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Sekiguchi, K. Kishino, A. Kikuchi, Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 96, 231104 (2010)CrossRefGoogle Scholar
  33. 33.
    K. Kishino, A. Yanagihara, K. Ikeda, K. Yamano, Monolithic integration of four-colour InGaN-based nanocolumn LEDs. Electron. Lett. 51, 852 (2015)CrossRefGoogle Scholar
  34. 34.
    C.H. Lee, Y.J. Kim, Y.J. Hong, S.R. Jeon, S. Bae, B.H. Hong, G.C. Yi, Flexible inorganic nanostructure light- emitting diodes fabricated on graphene films. Adv. Mater. 23, 4614 (2011)CrossRefGoogle Scholar
  35. 35.
    K. Chung, H. Beak, Y. Tchoe, H. Oh, H. Yoo, M. Kim, G.-C. Yi, Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes. Appl. Mater. 2, 092512 (2014)CrossRefGoogle Scholar
  36. 36.
    X. Dai, A. Messanvi, H. Zhang, C. Durand, J. Eymery, C. Bougerol, F.H. Julien, M. Tchernycheva, Flexible light-emitting diodes based on vertical nitride nanowires. Nano Lett. 15, 6958 (2015)CrossRefGoogle Scholar
  37. 37.
    M.D. Brubaker et al., On-chip optical interconnects made with gallium nitride nanowires. Nano Lett. 13, 374 (2013)CrossRefGoogle Scholar
  38. 38.
    M. Tchernycheva et al., Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors. Nano Lett. 14, 3515 (2014)CrossRefGoogle Scholar
  39. 39.
    C. Goßler et al., GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. J. Phys. D. Appl. Phys. 47, 205401 (2014)CrossRefGoogle Scholar
  40. 40.
    D. Massoubre, E. Xie, B. Guilhabert, J. Herrnsdorf, E. Gu, I.M. Watson, M.D. Dawson, Micro-structured light emission from planar InGaN light-emitting diodes. Semicond. Sci. Technol. 29, 015005 (2013)CrossRefGoogle Scholar
  41. 41.
    F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287 (2005)CrossRefGoogle Scholar
  42. 42.
    R. Köster, J.-S. Hwang, C. Durand, D.L.S. Dang, J. Eymery, Self-assembled growth of catalyst-free GaN wires by metal–organic vapour phaseepitaxy. Nanotechnology 21, 015602 (2009)CrossRefGoogle Scholar
  43. 43.
    X. Wang et al., Continuous-flow MOVPE of Ga-polar GaN column arrays and core–shell LED structures. Cryst. Growth Des. 13, 3475 (2013)CrossRefGoogle Scholar
  44. 44.
    Y.T. Lin, T.W. Yeh, Y. Nakajima, P.D. Dapkus, Catalyst- free GaN nanorods synthesized by selective area growth. Adv. Funct. Mater. 24, 3162 (2014)CrossRefGoogle Scholar
  45. 45.
    H.-M. Kim, D.S. Kim, Y.S. Park, D.Y. Kim, T.W. Kang, K.S. Chung, Growth of GaN nanorods by a hydride vapor phase epitaxy method. Adv. Mater. 14, 991 (2002)CrossRefGoogle Scholar
  46. 46.
    G. Jacopin et al., Single-wire light-emitting diodes based on GaN wires containing both polar and nonpolar InGaN/GaN quantum wells. Appl. Phys. Express 5, 014101 (2011)CrossRefGoogle Scholar
  47. 47.
    J.-R. Chang, S.-P. Chang, Y.-J. Li, Y.-J. Cheng, K.-P. Sou, J.-K. Huang, H.-C. Kuo, C.-Y. Chang, Fabrication and luminescent properties of core-shell InGaN/GaN multiple quantum wells on GaN nanopillars. Appl. Phys. Lett. 100, 261103 (2012)CrossRefGoogle Scholar
  48. 48.
    Y.J. Hong, C.H. Lee, A. Yoon, M. Kim, H.K. Seong, H.J. Chung, C. Sone, Y.J. Park, G.C. Yi, Inorganic optoelectronics: Visible- color- tunable light- emitting diodes (Adv. Mater. 29/2011). Adv. Mater. 23, 3224 (2011)CrossRefGoogle Scholar
  49. 49.
    M. Tchernycheva et al., InGaN/GaN core–shell single nanowire light emitting diodes with graphene-based p-contact. Nano Lett. 14, 2456 (2014)CrossRefGoogle Scholar
  50. 50.
    H. Zhang, G. Jacopin, V. Neplokh, L. Largeau, F.H. Julien, O. Kryliouk, M. Tchernycheva, Color control of nanowire InGaN/GaN light emitting diodes by post-growth treatment. Nanotechnology 26, 465203 (2015)CrossRefGoogle Scholar
  51. 51.
    J. Ledig, X. Wang, S. Fündling, H. Schuhmann, M. Seibt, U. Jahn, H.H. Wehmann, A. Waag, Characterization of the internal properties of InGaN/GaN core–shell LEDs. Phys. Status Solidi A 213, 11 (2016)CrossRefGoogle Scholar
  52. 52.
    M. Tchernycheva et al., Core–shell InGaN/GaN nanowire light emitting diodes analyzed by electron beam induced current microscopy and cathodoluminescence mapping. Nanoscale 7, 11692 (2015)CrossRefGoogle Scholar
  53. 53.
    M. Sanchez-Garcia, E. Calleja, E. Monroy, F. Sanchez, F. Calle, E. Munoz, R. Beresford, The effect of the III/V ratio and substrate temperature on the morphology and properties of GaNand AlN-layers grown by molecular beam epitaxy on Si (1 1 1). J. Cryst. Growth 183, 23 (1998)CrossRefGoogle Scholar
  54. 54.
    M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, K. Kishino, Growth of self-organized GaN nanostructures on Al2O3 (0001) by RF-radical source molecular beam epitaxy. Jpn. J. Appl. Phys. 36, L459 (1997)CrossRefGoogle Scholar
  55. 55.
    S. Fernández-Garrido, J. Grandal, E. Calleja, M. Sánchez-García, D. López-Romero, A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si (111). J. Appl. Phys. 106, 126102 (2009)CrossRefGoogle Scholar
  56. 56.
    J. Ristić, E. Calleja, S. Fernández-Garrido, L. Cerutti, A. Trampert, U. Jahn, K.H. Ploog, On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy. J. Cryst. Growth 310, 4035 (2008)CrossRefGoogle Scholar
  57. 57.
    L. Cerutti, J. Ristić, S. Fernández-Garrido, E. Calleja, A. Trampert, K. Ploog, S. Lazic, J. Calleja, Wurtzite GaN nanocolumns grown on Si (001) by molecular beam epitaxy. Appl. Phys. Lett. 88, 213114 (2006)CrossRefGoogle Scholar
  58. 58.
    M. Hetzl, F. Schuster, A. Winnerl, S. Weiszer, M. Stutzmann, GaN nanowires on diamond. Mater. Sci. Semicond. Process. 48, 65 (2016)CrossRefGoogle Scholar
  59. 59.
    K.A. Bertness, A.W. Sanders, D.M. Rourke, T.E. Harvey, A. Roshko, J.B. Schlager, N.A. Sanford, Controlled nucleation of GaN nanowires grown with molecular beam epitaxy. Adv. Funct. Mater. 20, 2911 (2010)CrossRefGoogle Scholar
  60. 60.
    O. Landré, C. Bougerol, H. Renevier, B. Daudin, Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy. Nanotechnology 20, 415602 (2009)CrossRefGoogle Scholar
  61. 61.
    R. Songmuang, O. Landré, B. Daudin, From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer. Appl. Phys. Lett. 91, 251902 (2007)CrossRefGoogle Scholar
  62. 62.
    J. Zúñiga-Pérez et al., Polarity in GaN and ZnO: Theory, measurement, growth, and devices. Appl. Phys. Rev. 3, 041303 (2016)CrossRefGoogle Scholar
  63. 63.
    K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, B. Daudin, Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si (111). Phys. Rev. B 84, 245302 (2011)CrossRefGoogle Scholar
  64. 64.
    K. Hestroffer, C. Leclere, V. Cantelli, C. Bougerol, H. Renevier, B. Daudin, In situ study of self-assembled GaN nanowires nucleation on Si (111) by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 100, 212107 (2012)CrossRefGoogle Scholar
  65. 65.
    L. Largeau, E. Galopin, N. Gogneau, L. Travers, F. Glas, J.-C. Harmand, N-polar GaN nanowires seeded by Al droplets on Si (111). Cryst. Growth Des. 12, 2724 (2012)CrossRefGoogle Scholar
  66. 66.
    T. Auzelle, B. Haas, A. Minj, C. Bougerol, J.-L. Rouvière, A. Cros, J. Colchero, B. Daudin, The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires. J. Appl. Phys. 117, 245303 (2015)CrossRefGoogle Scholar
  67. 67.
    S. Fernández-Garrido, X. Kong, T. Gotschke, R. Calarco, L. Geelhaar, A. Trampert, O. Brandt, Spontaneous nucleation and growth of GaN nanowires: The fundamental role of crystal polarity. Nano Lett. 12, 6119 (2012)CrossRefGoogle Scholar
  68. 68.
    C. Chèze et al., Direct comparison of catalyst-free and catalyst-induced GaN nanowires. Nano Res. 3, 528 (2010)CrossRefGoogle Scholar
  69. 69.
    O. Brandt, C. Pfüller, C. Chèze, L. Geelhaar, H. Riechert, Sub-meV linewidth of excitonic luminescence in single GaN nanowires: Direct evidence for surface excitons. Phys. Rev. B 81, 045302 (2010)CrossRefGoogle Scholar
  70. 70.
    V. Kumaresan, L. Largeau, F. Oehler, H. Zhang, O. Mauguin, F. Glas, N. Gogneau, M. Tchernycheva, J.-C. Harmand, Self-induced growth of vertical GaN nanowires on silica. Nanotechnology 27(13), 135602 (2016)CrossRefGoogle Scholar
  71. 71.
    V. Kumaresan, L. Largeau, A. Madouri, F. Glas, H. Zhang, F. Oehler, A. Cavanna, A. Babichev, L. Travers, N. Gogneau, M. Tchernycheva, J.-C. Harmand, Epitaxy of GaN nanowires on graphene. Nano Lett. 16(8), 4895 (2016)CrossRefGoogle Scholar
  72. 72.
    G. Calabrese, P. Corfdir, G. Gao, C. Pfüller, A. Trampert, O. Brandt, L. Geelhaar, S. Fernández-Garrido, Molecular beam epitaxy of single crystalline GaN nanowires on a flexible Ti foil. Appl. Phys. Lett. 108, 202101 (2016)CrossRefGoogle Scholar
  73. 73.
    V. Consonni, A. Trampert, L. Geelhaar, H. Riechert, Physical origin of the incubation time of self-induced GaN nanowires. Appl. Phys. Lett. 99, 033102 (2011)CrossRefGoogle Scholar
  74. 74.
    C. Chèze, L. Geelhaar, A. Trampert, H. Riechert, In situ investigation of self-induced GaN nanowire nucleation on Si. Appl. Phys. Lett. 97, 043101 (2010)CrossRefGoogle Scholar
  75. 75.
    V. Consonni, M. Hanke, M. Knelangen, L. Geelhaar, A. Trampert, H. Riechert, Nucleation mechanisms of self-induced GaN nanowires grown on an amorphous interlayer. Phys. Rev. B 83, 035310 (2011)CrossRefGoogle Scholar
  76. 76.
    V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, H. Riechert, Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius. Phys. Rev. B 81, 085310 (2010)CrossRefGoogle Scholar
  77. 77.
    M. Knelangen, V. Consonni, A. Trampert, H. Riechert, In situ analysis of strain relaxation during catalyst-free nucleation and growth of GaN nanowires. Nanotechnology 21, 245705 (2010)CrossRefGoogle Scholar
  78. 78.
    A. Wierzbicka et al., Influence of substrate nitridation temperature on epitaxial alignment of GaN nanowires to Si (111) substrate. Nanotechnology 24, 035703 (2013)CrossRefGoogle Scholar
  79. 79.
    J.E. Northrup, J. Neugebauer, Theory of GaN (10 1¯ 0) and (11 2¯ 0) surfaces. Phys. Rev. B 53, R10477 (1996)CrossRefGoogle Scholar
  80. 80.
    V.G. Dubrovskii, V. Consonni, A. Trampert, L. Geelhaar, H. Riechert, Scaling thermodynamic model for the self-induced nucleation of GaN nanowires. Phys. Rev. B 85, 165317 (2012)CrossRefGoogle Scholar
  81. 81.
    N.V. Sibirev, M. Tchernycheva, M.A. Timofeeva, J.-C. Harmand, G.E. Cirlin, V.G. Dubrovskii, Influence of shadow effect on the growth and shape of InAs nanowires. J. Appl. Phys. 111, 104317 (2012)CrossRefGoogle Scholar
  82. 82.
    R. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, H. Lüth, Mechanism of molecular beam epitaxy growth of GaN nanowires on Si (111). Appl. Phys. Lett. 90, 123117 (2007)CrossRefGoogle Scholar
  83. 83.
    L. Lymperakis, J. Neugebauer, Large anisotropic adatom kinetics on nonpolar GaN surfaces: Consequences for surface morphologies and nanowire growth. Phys. Rev. B 79, 241308 (2009)CrossRefGoogle Scholar
  84. 84.
    E. Galopin, L. Largeau, G. Patriarche, L. Travers, F. Glas, J. Harmand, Morphology of self-catalyzed GaN nanowires and chronology of their formation by molecular beam epitaxy. Nanotechnology 22, 245606 (2011)CrossRefGoogle Scholar
  85. 85.
    V. Consonni, V. Dubrovskii, A. Trampert, L. Geelhaar, H. Riechert, Quantitative description for the growth rate of self-induced GaN nanowires. Phys. Rev. B 85, 155313 (2012)CrossRefGoogle Scholar
  86. 86.
    K. Kishino, H. Sekiguchi, A. Kikuchi, Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. J. Cryst. Growth 311, 2063 (2009)CrossRefGoogle Scholar
  87. 87.
    Z.A. Gačević, D. Gomez Sanchez, E. Calleja, Formation mechanisms of GaN nanowires grown by selective area growth homoepitaxy. Nano Lett. 15, 1117 (2015)CrossRefGoogle Scholar
  88. 88.
    F. Schuster, M. Hetzl, S. Weiszer, J.A. Garrido, M. de la Mata, C. Magen, J. Arbiol, M. Stutzmann, Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy. Nano Lett. 15, 1773 (2015)CrossRefGoogle Scholar
  89. 89.
    H. Sekiguchi, K. Kishino, A. Kikuchi, Ti-mask selective-area growth of GaN by RFplasma- assisted molecular-beam epitaxy for fabricating regularly arranged InGaN/GaN nanocolumns. Appl. Phys. Express 1, 124002 (2008)CrossRefGoogle Scholar
  90. 90.
    A. Bengoechea-Encabo et al., Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks. J. Cryst. Growth 325, 89 (2011)CrossRefGoogle Scholar
  91. 91.
    T. Schumann, T. Gotschke, F. Limbach, T. Stoica, R. Calarco, Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer. Nanotechnology 22, 095603 (2011)CrossRefGoogle Scholar
  92. 92.
    J. Kruse et al., Selective-area growth of GaN nanowires on SiO2-masked Si (111) substrates by molecular beam epitaxy. J. Appl. Phys. 119, 224305 (2016)CrossRefGoogle Scholar
  93. 93.
    M.D. Brubaker, S.M. Duff, T.E. Harvey, P.T. Blanchard, A. Roshko, A.W. Sanders, N.A. Sanford, K.A. Bertness, Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si (111) substrates by molecular beam epitaxy. Cryst. Growth Des. 16, 596 (2015)CrossRefGoogle Scholar
  94. 94.
    K. Kishino, K. Nagashima, K. Yamano, Monolithic integration of InGaN-based nanocolumn light-emitting diodes with different emission colors. Appl. Phys. Express 6, 012101 (2012)CrossRefGoogle Scholar
  95. 95.
    R. Armitage, K. Tsubaki, Multicolour luminescence from InGaN quantum wells grown over GaN nanowire arrays by molecular-beam epitaxy. Nanotechnology 21, 195202 (2010)CrossRefGoogle Scholar
  96. 96.
    T. Kouno, K. Kishino, Well-arranged novel InGaN hexagonal nanoplates at the tops of nitrogen-polarity GaN nanocolumn arrays. AIP Adv. 2, 012140 (2012)CrossRefGoogle Scholar
  97. 97.
    X. Zhang, B. Haas, J.-L. Rouvière, E. Robin, B. Daudin, Growth mechanism of InGaN nano-umbrellas. Nanotechnology 27, 455603 (2016)CrossRefGoogle Scholar
  98. 98.
    F. Qian, Y. Li, S. Gradecak, D. Wang, C.J. Barrelet, C.M. Lieber, Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975 (2004)CrossRefGoogle Scholar
  99. 99.
    R. Wagner, W. Ellis, Vapor- liquid- solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)CrossRefGoogle Scholar
  100. 100.
    J. Khanderi, A. Wohlfart, H. Parala, A. Devi, J. Hambrock, A. Birkner, R.A. Fischer, MOCVD of gallium nitride nanostructures using (N 3) 2 Ga {(CH 2) 3 NR 2}, R= Me, Et, as a single molecule precursor: morphology control and materials characterization. J. Mater. Chem. 13, 1438 (2003)CrossRefGoogle Scholar
  101. 101.
    S.D. Hersee, X. Sun, X. Wang, The controlled growth of GaN nanowires. Nano Lett. 6, 1808 (2006)CrossRefGoogle Scholar
  102. 102.
    K. Choi, M. Arita, Y. Arakawa, Selective-area growth of thin GaN nanowires by MOCVD. J. Cryst. Growth 357, 58 (2012)CrossRefGoogle Scholar
  103. 103.
    W. Bergbauer et al., Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods andembedded InGaN quantum wells. Nanotechnology 21, 305201 (2010)CrossRefGoogle Scholar
  104. 104.
    R. Qhalid Fareed, J. Yang, J. Zhang, V. Adivarahan, V. Chaturvedi, M. Asif Khan, Vertically faceted lateral overgrowth of GaN on SiC with conducting buffer layers using pulsed metalorganic chemical vapor deposition. Appl. Phys. Lett. 77, 2343 (2000)CrossRefGoogle Scholar
  105. 105.
    Y.-S. Chen et al., Threading dislocation evolution in patterned GaN nanocolumn growth and coalescence overgrowth. J. Appl. Phys. 106, 023521 (2009)CrossRefGoogle Scholar
  106. 106.
    S.-Y. Bae, J.-Y. Lee, J.-H. Min, D.-S. Lee, Morphology evolution of pulsed-flux Ga- polar GaN nanorod growth by metal organic vapor phase epitaxy and its nucleation dependence. Appl. Phys. Express 6, 075501 (2013)CrossRefGoogle Scholar
  107. 107.
    W. Seifert, D. Asoli, Z. Bi, Nitride nanowires and method of producing such, (Google Patents, 2010).Google Scholar
  108. 108.
    X. Chen, B. Gayral, D. Sam-Giao, C. Bougerol, C. Durand, J. Eymery, Catalyst-free growth of high-optical quality GaN nanowires by metal-organic vapour phase epitaxy. Appl. Phys. Lett. 99, 251910 (2011)CrossRefGoogle Scholar
  109. 109.
    S. Haffouz, B. Beaumont, P. Gibart, Effect of magnesium and silicon on the lateral overgrowth of GaN patterned substrates by metal organic vapor phase epitaxy. MRS Internet J. Nitride Semicond. Res. 3, e8 (1998)CrossRefGoogle Scholar
  110. 110.
    R. Koester et al., M-plane core–shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices. Nano Lett. 11, 4839 (2011)CrossRefGoogle Scholar
  111. 111.
    P. Tchoulfian, F. Donatini, F. Levy, B. Amstatt, A. Amstatt, P. Dussaigne, E.B. Ferret, J. Pernot, Thermoelectric and micro-Raman measurements of carrier density and mobility in heavily Si-doped GaN wires. Appl. Phys. Lett. 103, 202101 (2013)CrossRefGoogle Scholar
  112. 112.
    B. Foltynski, N. Garro, M. Vallo, M. Finken, C. Giesen, H. Kalisch, A. Vescan, A. Cantarero, M. Heuken, The controlled growth of GaN microrods on Si (111) substrates by MOCVD. J. Cryst. Growth 414, 200 (2015)CrossRefGoogle Scholar
  113. 113.
    Y.-T. Lin, T.-W. Yeh, P.D. Dapkus, Mechanism of selective area growth of GaN nanorods by pulsed mode metalorganic chemical vapor deposition. Nanotechnology 23, 465601 (2012)CrossRefGoogle Scholar
  114. 114.
    B.O. Jung, S.-Y. Bae, Y. Kato, M. Imura, D.-S. Lee, Y. Honda, H. Amano, Morphology development of GaN nanowires using a pulsed-mode MOCVD growth technique. Cryst. Eng. Commun. 16, 2273 (2014)CrossRefGoogle Scholar
  115. 115.
    J. Eymery, D. Salomon, X. Chen, C. Durand, Method of selective growth without catalyst on a semiconducting structure, (Google Patents, 2015)Google Scholar
  116. 116.
    C. Tessarek, M. Heilmann, E. Butzen, A. Haab, H. Hardtdegen, C. Dieker, E. Spiecker, S. Christiansen, The role of Si during the growth of GaN micro-and nanorods. Cryst. Growth Des. 14, 1486 (2014)CrossRefGoogle Scholar
  117. 117.
    S. Haffouz, H. Lahreche, P. Vennéguès, P. De Mierry, B. Beaumont, F. Omnes, P. Gibart, The effect of the Si/N treatment of a nitridated sapphire surface on the growth mode of GaN in low-pressure metalorganic vapor phase epitaxy. Appl. Phys. Lett. 73, 1278 (1998)CrossRefGoogle Scholar
  118. 118.
    S. Salomon, J. Eymery, E. Pauliac-Vaujour, GaN wire-based Langmuir–Blodgett films for self-powered flexible strain sensors. Nanotechnology 25, 375502 (2014)CrossRefGoogle Scholar
  119. 119.
    S. Li et al., Nitrogen-polar core-shell GaN light-emitting diodes grown by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 101, 032103 (2012)CrossRefGoogle Scholar
  120. 120.
    X. Wang, J. Hartmann, M. Mandl, M. Sadat Mohajerani, H.-H. Wehmann, M. Strassburg, A. Waag, Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy. J. Appl. Phys. 115, 163104 (2014)CrossRefGoogle Scholar
  121. 121.
    X.J. Chen, J.-S. Hwang, G. Perillat-Merceroz, S. Landis, B. Martin, D.L.S. Dang, J. Eymery, C. Durand, Wafer-scale selective area growth of GaN hexagonal prismatic nanostructures on c-sapphire substrate. J. Cryst. Growth 322, 15 (2011)CrossRefGoogle Scholar
  122. 122.
    T. Schimpke, A. Avramescu, A. Koller, A. Fernando-Saavedra, J. Hartmann, J. Ledig, A. Waag, M. Strassburg, H.-J. Lugauer, The influence of MOVPE growth conditions on the shell of core-shell GaN microrod structures. J. Cryst. Growth 465, 34 (2017)CrossRefGoogle Scholar
  123. 123.
    H.M. Kim, T.W. Kang, K.S. Chung, Nanoscale ultraviolet- light- emitting diodes using wide- bandgap gallium nitride nanorods. Adv. Mater. 15, 567 (2003)CrossRefGoogle Scholar
  124. 124.
    H.-M. Kim, Y.-H. Cho, H. Lee, S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang, K.S. Chung, High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 4, 1059 (2004)CrossRefGoogle Scholar
  125. 125.
    A. Kikuchi, M. Kawai, M. Tada, K. Kishino, InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate. Jpn. J. Appl. Phys. 43, L1524 (2004)CrossRefGoogle Scholar
  126. 126.
    K. Kishino, A. Kikuchi, H. Sekiguchi, S. Ishizawa, InGaN/GaN nanocolumn LEDs emitting from blue to red. Proc. SPIE 2017, 64730T (2007)CrossRefGoogle Scholar
  127. 127.
    Z. Zhong, F. Qian, D. Wang, C.M. Lieber, Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343 (2003)CrossRefGoogle Scholar
  128. 128.
    A. Waag et al., The nanorod approach: GaN NanoLEDs for solid state lighting. Phys. Status Solidi C 8, 2296 (2011)CrossRefGoogle Scholar
  129. 129.
    Y.-H. Ra, R. Navamathavan, J.-H. Park, C.-R. Lee, High-quality uniaxial in x Ga1–x N/GaN multiple quantum well (MQW) nanowires (NWs) on Si (111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication. ACS Appl. Mater. Interfaces 5, 2111 (2013)CrossRefGoogle Scholar
  130. 130.
    L. Rigutti et al., Correlation of microphotoluminescence spectroscopy, scanning transmission electron microscopy, and atom probe tomography on a single nano-object containing an InGaN/GaN multiquantum well system. Nano Lett. 14, 107 (2013)CrossRefGoogle Scholar
  131. 131.
    R. Koester et al., High-speed GaN/GaInN nanowire array light-emitting diode on silicon (111). Nano Lett. 15, 2318 (2015)CrossRefGoogle Scholar
  132. 132.
    Y.-H. Ra, R. Navamathavan, J.-H. Park, C.-R. Lee, Coaxial In x Ga1–x N/GaN multiple quantum well nanowire arrays on Si (111) substrate for high-performance light-emitting diodes. Nano Lett. 13, 3506 (2013)CrossRefGoogle Scholar
  133. 133.
    H.-S. Chen, Y.-F. Yao, C.-H. Liao, C.-G. Tu, C.-Y. Su, W.-M. Chang, Y.-W. Kiang, C. Yang, Light-emitting device with regularly patterned growth of an InGaN/GaN quantum-well nanorod light-emitting diode array. Opt. Lett. 38, 3370 (2013)CrossRefGoogle Scholar
  134. 134.
    N. Anttu, Modifying the emission of light from a semiconductor nanowire array. J. Appl. Phys. 120, 043108 (2016)CrossRefGoogle Scholar
  135. 135.
    K. Kishino, J. Kamimura, K. Kamiyama, Near-infrared InGaN nanocolumn lightemitting diodes operated at 1.46 μm. Appl. Phys. Express 5, 031001 (2012)CrossRefGoogle Scholar
  136. 136.
    R. Vadivelu, Y. Igawa, K. Kishino, 633 nm red emissions from InGaN nanocolumn lightemitting diode by radio frequency plasma assisted molecular beam epitaxy. Jpn. J. Appl. Phys. 52, 08JE18 (2013)CrossRefGoogle Scholar
  137. 137.
    M. Nami, R.F. Eller, S. Okur, A.K. Rishinaramangalam, S. Liu, I. Brener, D.F. Feezell, Tailoring the morphology and luminescence of GaN/InGaN core–shell nanowires using bottomup selective-area epitaxy. Nanotechnology 28, 025202 (2016)CrossRefGoogle Scholar
  138. 138.
    A. Yanagihara, S. Ishizawa, K. Kishino, Directional radiation beam from yellow-emitting InGaN-based nanocolumn LEDs with ordered bottom-up nanocolumn array. Appl. Phys. Express 7, 112102 (2014)CrossRefGoogle Scholar
  139. 139.
    H. Hayashi, D. Fukushima, T. Noma, D. Tomimatsu, Y. Konno, M. Mizuno, K. Kishino, Thermally engineered flip-chip InGaN/GaN well-ordered nanocolumn array LEDs. IEEE Photon. Technol. Lett. 27, 2343 (2015)CrossRefGoogle Scholar
  140. 140.
    F. Limbach et al., Current path in light emitting diodes based on nanowire ensembles. Nanotechnology 23, 465301 (2012)CrossRefGoogle Scholar
  141. 141.
    A. Bavencove et al., Submicrometre resolved optical characterization of green nanowirebased light emitting diodes. Nanotechnology 22, 345705 (2011)CrossRefGoogle Scholar
  142. 142.
    S. Jahangir, M. Mandl, M. Strassburg, P. Bhattacharya, Molecular beam epitaxial growth and optical properties of red-emitting (λ= 650 nm) InGaN/GaN disks-in-nanowires on silicon. Appl. Phys. Lett. 102, 071101 (2013)CrossRefGoogle Scholar
  143. 143.
    T. Andreev, E. Monroy, B. Gayral, B. Daudin, N.Q. Liem, Y. Hori, M. Tanaka, O. Oda, L. Si Dang, Eu locations in Eu-doped In Ga N/ Ga N quantum dots. Appl. Phys. Lett. 87(2), 021906 (2005)CrossRefGoogle Scholar
  144. 144.
    H. Sekiguchi, T. Imanishi, R. Matsuzaki, K. Ozaki, K. Yamane, H. Okada, K. Kishino, A. Wakahara, Stable-wavelength operation of europium-doped GaN nanocolumn light-emitting diodes grown by rf-plasma-assisted molecular beam epitaxy. Electron. Lett. 53, 666 (2017)CrossRefGoogle Scholar
  145. 145.
    R. Wang, X. Liu, I. Shih, Z. Mi, High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si. Appl. Phys. Lett. 106, 261104 (2015)CrossRefGoogle Scholar
  146. 146.
    R. Wang, H.P. Nguyen, A.T. Connie, J. Lee, I. Shih, Z. Mi, Color-tunable, phosphorfree InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Opt. Express 22, A1768 (2014)CrossRefGoogle Scholar
  147. 147.
    H.P.T. Nguyen et al., Engineering the carrier dynamics of InGaN nanowire white lightemitting diodes by distributed p-AlGaN electron blocking layers. Sci. Rep. 5, 14745 (2015)CrossRefGoogle Scholar
  148. 148.
    M.R. Philip, D.D. Choudhary, M. Djavid, M.N. Bhuyian, J. Piao, T.T. Pham, D. Misra, H.P. Nguyen, Controlling color emission of InGaN/AlGaN nanowire light-emitting diodes grown by molecular beam epitaxy. J. Vac. Sci. Technol. B: Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 35, 02B108 (2017)CrossRefGoogle Scholar
  149. 149.
    C. Zhao et al., An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley–Read–Hall recombination. Nanoscale 7, 16658 (2015)CrossRefGoogle Scholar
  150. 150.
    S. Sadaf, Y.-H. Ra, H. Nguyen, M. Djavid, Z. Mi, Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes. Nano Lett. 15, 6696 (2015)CrossRefGoogle Scholar
  151. 151.
    J. Simon, Z. Zhang, K. Goodman, H. Xing, T. Kosel, P. Fay, D. Jena, Polarizationinduced Zener tunnel junctions in wide-band-gap heterostructures. Phys. Rev. Lett. 103, 026801 (2009)CrossRefGoogle Scholar
  152. 152.
    S. Krishnamoorthy, D.N. Nath, F. Akyol, P.S. Park, M. Esposto, S. Rajan, Polarizationengineered GaN/InGaN/GaN tunnel diodes. Appl. Phys. Lett. 97, 203502 (2010)CrossRefGoogle Scholar
  153. 153.
    M.J. Grundmann, U.K. Mishra, Multi- color light emitting diode using polarizationinduced tunnel junctions. Phys. Status Solidi C 4, 2830 (2007)CrossRefGoogle Scholar
  154. 154.
    A. Sarwar, S.D. Carnevale, F. Yang, T.F. Kent, J.J. Jamison, D.W. McComb, R.C. Myers, Semiconductor nanowire light- emitting diodes grown on metal: A direction toward large- scale fabrication of nanowire devices. Small 11, 5402 (2015)CrossRefGoogle Scholar
  155. 155.
    C. Zhao et al., Droop-free, reliable, and high-power InGaN/GaN nanowire light-emitting diodes for monolithic metal-optoelectronics. Nano Lett. 16, 4616 (2016)CrossRefGoogle Scholar
  156. 156.
    C. Zhao, T.K. Ng, N. Wei, A. Prabaswara, M.S. Alias, B. Janjua, C. Shen, B.S. Ooi, Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters. Nano Lett. 16, 1056 (2016)CrossRefGoogle Scholar
  157. 157.
    B.J. May, A.G. Sarwar, R.C. Myers, Nanowire LEDs grown directly on flexible metal foil. Appl. Phys. Lett. 108, 141103 (2016)CrossRefGoogle Scholar
  158. 158.
    K. Bando, K. Sakano, Y. Noguchi, Y. Shimizu, Development of high-bright and purewhite LED lamps. J. Light. Vis. Environ. 22, 1_2 (1998)CrossRefGoogle Scholar
  159. 159.
    Y. Hu, W. Zhuang, H. Ye, D. Wang, S. Zhang, X. Huang, A novel red phosphor for white light emitting diodes. J. Alloys Compd. 390, 226 (2005)CrossRefGoogle Scholar
  160. 160.
    M. Yamada, Y. Narukawa, T. Mukai, Phosphor free high-luminous-efficiency white light-emitting diodes composed of InGaN multi-quantum well. Jpn. J. Appl. Phys. 41, L246 (2002)CrossRefGoogle Scholar
  161. 161.
    B. Damilano, N. Grandjean, C. Pernot, J. Massies, Monolithic white light emitting diodes based on InGaN/GaN multiple-quantum wells. Jpn. J. Appl. Phys. 40, L918 (2001)CrossRefGoogle Scholar
  162. 162.
    D. Yang, L. Wang, W.-B. Lv, Z.-B. Hao, Y. Luo, Growth and characterization of phosphor-free white light-emitting diodes based on InGaN blue quantum wells and green–yellow quantum dots. Superlattice. Microst. 82, 26 (2015)CrossRefGoogle Scholar
  163. 163.
    B. Damilano, B. Gil, Yellow–red emission from (Ga, In) N heterostructures. J. Phys. D. Appl. Phys. 48, 403001 (2015)CrossRefGoogle Scholar
  164. 164.
    D. Schiavon, M. Binder, A. Loeffler, M. Peter, Optically pumped GaInN/GaN multiple quantum wells for the realization of efficient green light-emitting devices. Appl. Phys. Lett. 102, 113509 (2013)CrossRefGoogle Scholar
  165. 165.
    W. Guo, A. Banerjee, P. Bhattacharya, B.S. Ooi, InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon. Appl. Phys. Lett. 98, 193102 (2011)CrossRefGoogle Scholar
  166. 166.
    H.P.T. Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G.A. Botton, Z. Mi, Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes. Nano Lett. 12, 1317 (2012)CrossRefGoogle Scholar
  167. 167.
    H.P.T. Nguyen, S. Zhang, A.T. Connie, M.G. Kibria, Q. Wang, I. Shih, Z. Mi, Breaking the carrier injection bottleneck of phosphor-free nanowire white light-emitting diodes. Nano Lett. 13, 5437 (2013)CrossRefGoogle Scholar
  168. 168.
    Z. Mi, H. Nguyen, M. Djavid, S. Zhang, A. Connie, S. Sadaf, Q. Wang, S. Zhao, I. Shih, High power phosphor-free InGaN/GaN/AlGaN core-shell nanowire white light emitting diodes on Si substrates. ECS Trans. 61, 9 (2014)CrossRefGoogle Scholar
  169. 169.
    S.-I. Inoue, T. Naoki, T. Kinoshita, T. Obata, H. Yanagi, Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure. Appl. Phys. Lett. 106, 131104 (2015)CrossRefGoogle Scholar
  170. 170.
    Y.K. Ooi, C. Liu, J. Zhang, Analysis on polarization-dependent light extraction and effect of passivation layer for 230 nm AlGaN nanowire light-emitting diodes. IEEE Photon. J. 9, 1–12 (2017)CrossRefGoogle Scholar
  171. 171.
    H.-Y. Ryu, Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures. Nanoscale Res. Lett. 9, 58 (2014)CrossRefGoogle Scholar
  172. 172.
    H. Sekiguchi, K. Kato, J. Tanaka, A. Kikuchi, K. Kishino, Ultraviolet GaN- based nanocolumn light- emitting diodes grown on n- (111) Si substrates by rf- plasma- assisted molecular beam epitaxy. Phys. Status Solidi A 205, 1067 (2008)CrossRefGoogle Scholar
  173. 173.
    A. Pierret, C. Bougerol, S. Murcia-Mascaros, A. Cros, H. Renevier, B. Gayral, B. Daudin, Growth, structural and optical properties of AlGaN nanowires in the whole composition range. Nanotechnology 24, 115704 (2013)CrossRefGoogle Scholar
  174. 174.
    C. Himwas, M. Den Hertog, L.S. Dang, E. Monroy, R. Songmuang, Alloy inhomogeneity and carrier localization in AlGaN sections and AlGaN/AlN nanodisks in nanowires with 240–350 nm emission. Appl. Phys. Lett. 105, 241908 (2014)CrossRefGoogle Scholar
  175. 175.
    G. Jacopin et al., Photoluminescence polarization in strained GaN/AlGaN core/shell nanowires. Nanotechnology 23, 325701 (2012)CrossRefGoogle Scholar
  176. 176.
    C. Durand et al., M-Plane GaN/InAlN multiple quantum wells in core–shell wire structure for UV emission. ACS Photon. 1, 38 (2013)CrossRefGoogle Scholar
  177. 177.
    S. Zhao, M. Djavid, Z. Mi, Surface emitting, high efficiency near-vacuum ultraviolet light source with aluminum nitride nanowires monolithically grown on silicon. Nano Lett. 15, 7006 (2015)CrossRefGoogle Scholar
  178. 178.
    S. Zhao, S. Woo, M. Bugnet, X. Liu, J. Kang, G. Botton, Z. Mi, Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: A viable route to electrically injected deep ultraviolet lasers. Nano Lett. 15, 7801 (2015)CrossRefGoogle Scholar
  179. 179.
    Z. Mi et al., Molecular beam epitaxial growth and characterization of Al (Ga) N nanowire deep ultraviolet light emitting diodes and lasers. J. Phys. D. Appl. Phys. 49, 364006 (2016)CrossRefGoogle Scholar
  180. 180.
    S. Sadaf, S. Zhao, Y. Wu, Y.-H. Ra, X. Liu, S. Vanka, Z. Mi, An AlGaN core–shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band. Nano Lett. 17, 1212 (2017)CrossRefGoogle Scholar
  181. 181.
    D.A. Laleyan, S. Zhao, S.Y.-M. Woo, H.N. Tran, H.B. Le, T. Szkopek, H. Guo, G.A. Botton, Z. Mi, AlN/h-BN heterostructures for Mg dopant-free deep ultraviolet photonics. Nano Lett. 17, 3738–3743 (2017)CrossRefGoogle Scholar
  182. 182.
    S.-C. Zhu et al., Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons. Opt. Express 23(11), 13752 (2015)CrossRefGoogle Scholar
  183. 183.
    W. Pfaff, A. Vos, R. Hanson, Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters. J. Appl. Phys. 113, 024310 (2013)CrossRefGoogle Scholar
  184. 184.
    F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z.L. Wang, C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701 (2008)CrossRefGoogle Scholar
  185. 185.
    C. Mounir, T. Schimpke, G. Rossbach, A. Avramescu, M. Strassburg, U.T. Schwarz, Optical properties and internal quantum efficiency of InGaN/GaN core-shell microrods for solid state lighting. J. Appl. Phys. 120, 155702 (2016)CrossRefGoogle Scholar
  186. 186.
    J. Lee, X. Li, X. Ni, Ü. Özgür, H. Morkoç, T. Paskova, G. Mulholland, K. Evans, On carrier spillover in c-and m-plane InGaN light emitting diodes. Appl. Phys. Lett. 95, 201113 (2009)CrossRefGoogle Scholar
  187. 187.
    T. Sano, T. Doi, S.A. Inada, T. Sugiyama, Y. Honda, H. Amano, T. Yoshino, High internal quantum efficiency blue-green light-emitting diode with small efficiency droop fabricated on low dislocation density GaN substrate. Jpn. J. Appl. Phys. 52, 08JK09 (2013)CrossRefGoogle Scholar
  188. 188.
    C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, B. Witzigmann, Core–shell InGaN nanorod light emitting diodes: Electronic and optical device properties. Phys. Status Solidi A 209, 2304 (2012)CrossRefGoogle Scholar
  189. 189.
    G. Tourbot et al., Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnology 23, 135703 (2012)CrossRefGoogle Scholar
  190. 190.
    T. Krause et al., Nanofocus x-ray diffraction and cathodoluminescence investigations into individual core–shell (In, Ga) N/GaN rod light-emitting diodes. Nanotechnology 27, 325707 (2016)CrossRefGoogle Scholar
  191. 191.
    C. Mounir, T. Schimpke, G. Rossbach, A. Avramescu, M. Strassburg, U.T. Schwarz, Polarization-resolved micro-photoluminescence investigation of InGaN/GaN core-shell microrods. J. Appl. Phys. 121, 025701 (2017)CrossRefGoogle Scholar
  192. 192.
    M. Shahmohammadi, J.-D. Ganière, H. Zhang, R. Ciechonski, G. Vescovi, O. Kryliouk, M. Tchernycheva, G. Jacopin, Excitonic diffusion in InGaN/GaN core–shell nanowires. Nano Lett. 16, 243 (2015)CrossRefGoogle Scholar
  193. 193.
    C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, Y.-R. Wu, Three dimensional numerical study on the efficiency of a core-shell InGaN/GaN multiple quantum well nanowire light-emitting diodes. J. Appl. Phys. 113, 183104 (2013)CrossRefGoogle Scholar
  194. 194.
    M. Mohajerani et al., Evaluation of local free carrier concentrations in individual heavilydoped GaN: Si micro-rods by micro-Raman spectroscopy. Appl. Phys. Lett. 108, 091112 (2016)CrossRefGoogle Scholar
  195. 195.
    V. Hortelano, O. Martínez, R. Cuscó, L. Artús, J. Jiménez, Cathodoluminescence study of Mg activation in non-polar and semi-polar faces of undoped/Mg-doped GaN core–shell nanorods. Nanotechnology 27, 095706 (2016)CrossRefGoogle Scholar
  196. 196.
    P. Tchoulfian, F. Donatini, F. Levy, A. Dussaigne, P. Ferret, J. Pernot, Direct imaging of p–n junction in core–shell GaN wires. Nano Lett. 14, 3491 (2014)CrossRefGoogle Scholar
  197. 197.
    A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, M. Tsuchida, Flexible OLED displays using plastic substrates. IEEE J. Sel. Top. Quant. Electron. 10, 107 (2004)CrossRefGoogle Scholar
  198. 198.
    D. Kondakov, W. Lenhart, W. Nichols, Operational degradation of organic light-emitting diodes: Mechanism and identification of chemical products. J. Appl. Phys. 101, 024512 (2007)CrossRefGoogle Scholar
  199. 199.
    A. Fallahi, F.A. Taromi, A. Mohebbi, J.D. Yuen, M. Shahinpoor, A novel ambipolar polymer: from organic thin-film transistors to enhanced air-stable blue light emitting diodes. J. Mater. Chem. C 2, 6491 (2014)CrossRefGoogle Scholar
  200. 200.
    S.I. Park, A.P. Le, J. Wu, Y. Huang, X. Li, J.A. Rogers, Light emission characteristics and mechanics of foldable inorganic light- emitting diodes. Adv. Mater. 22, 3062 (2010)CrossRefGoogle Scholar
  201. 201.
    N. Guan, X. Dai, A. Babichev, F.H. Julien, M. Tchernycheva, Flexible inorganic light emitting diodes based on semiconductor nanowires. Chem. Sci. 8, 7904–7911 (2017)CrossRefGoogle Scholar
  202. 202.
    Z. Fan et al., Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648 (2009)CrossRefGoogle Scholar
  203. 203.
    J.M. Spurgeon, S.W. Boettcher, M.D. Kelzenberg, B.S. Brunschwig, H.A. Atwater, N.S. Lewis, Flexible, polymer- supported, Si wire array photoelectrodes. Adv. Mater. 22, 3277 (2010)CrossRefGoogle Scholar
  204. 204.
    K.E. Plass, M.A. Filler, J.M. Spurgeon, B.M. Kayes, S. Maldonado, B.S. Brunschwig, H.A. Atwater, N.S. Lewis, Flexible polymer- embedded Si wire arrays. Adv. Mater. 21, 325 (2009)CrossRefGoogle Scholar
  205. 205.
    M.E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M.B. Bavinck, M.A. Verheijen, E.P. Bakkers, L.P. Kouwenhoven, V. Zwiller, Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 737 (2012)CrossRefGoogle Scholar
  206. 206.
    M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, B.Q. Cao, J.Z. Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A.C. Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H.S. Kwack, J. Guinard, D.L.S. Dang, Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 20, 332001 (2009)CrossRefGoogle Scholar
  207. 207.
    A. Nadarajah, R.C. Word, J. Meiss, R. Könenkamp, Flexible inorganic nanowire lightemitting diode. Nano Lett. 8, 534 (2008)CrossRefGoogle Scholar
  208. 208.
    H. Li, G. Zhao, L. Wang, Z. Chen, S. Yang, Morphology controlled fabrication of InN nanowires on brass substrates. Nanomaterials 6, 195 (2016)CrossRefGoogle Scholar
  209. 209.
    H.K. Park, S.W. Yoon, Y.J. Eo, W.W. Chung, G.Y. Yoo, J.H. Oh, K.N. Lee, W. Kim, Y.R. Do, Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly. Sci. Rep. 6, 28312 (2016)CrossRefGoogle Scholar
  210. 210.
    M.C. McAlpine, R.S. Friedman, S. Jin, K.-H. Lin, W.U. Wang, C.M. Lieber, Highperformance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 3, 1531 (2003)CrossRefGoogle Scholar
  211. 211.
    N. Guan et al., Flexible white light emitting diodes based on nitride nanowires and nanophosphors. ACS Photon. 3, 597 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nan Guan
    • 1
  • Xing Dai
    • 1
  • François H. Julien
    • 1
  • Joël Eymery
    • 2
  • Christophe Durant
    • 3
  • Maria Tchernycheva
    • 1
    Email author
  1. 1.Centre de Nanosciences et de Nanotechnologies, UMR9001 CNRS, University Paris Sud, University Paris SaclayPalaiseauFrance
  2. 2.Univ. Grenoble Alpes, CEA, INAC, MEMGrenobleFrance
  3. 3.Univ. Grenoble Alpes, CEA, INAC, PHELIQS, “Nanophysique et Semiconducteurs”GrenobleFrance

Personalised recommendations