Reliability of Ultraviolet Light-Emitting Diodes

  • Carlo De SantiEmail author
  • Desiree Monti
  • Pradip Dalapati
  • Matteo Meneghini
  • Gaudenzio Meneghesso
  • Enrico Zanoni
Part of the Solid State Lighting Technology and Application Series book series (SSLTA, volume 4)


This chapter presents an extensive review of the literature on the degradation processes of GaN-based UV-A, UV-B, and UV-C LEDs. For the state-of-the-art devices, the main open issue is the increase in Shockley–Read–Hall non-radiative recombination inside the quantum well, originating from local generation of defects or from diffusion processes of dopant atoms or foreign impurities. Temperature acts as a significant acceleration factor, especially in lower wavelength devices, affected by a higher turn-on voltage. Changes in the chemical structure of the package and of the encapsulant, induced by the high energy of the photons, may lead to a lower reflectivity and transmittance, thus limiting the overall reliability of the devices.


  1. 1.
    A.A. Allerman, M.H. Crawford, A.J. Fischer, K.H.A. Bogart, S.R. Lee, D.M. Follstaedt, P.P. Provencio, D.D. Koleske, Growth and design of deep-UV (240-290 nm) light emitting diodes using AlGaN alloys. J. Cryst. Growth 272(1–4), 227–241 (2004). CrossRefGoogle Scholar
  2. 2.
    M. Asif Khan, AlGaN multiple quantum well based deep UV LEDs and their applications. Phys. Status Solidi Appl. Mater. Sci. 203(7), 1764–1770 (2006). CrossRefGoogle Scholar
  3. 3.
    M. Asif Khan, Deep ultraviolet light emitting diodes with emission below 300 nm. MRS Proc. 892 (2005).
  4. 4.
    M. Shatalov, Z. Gong, M. Gaevski, S. Wu, W. Sun, V. Adivarahan, M. Asif Khan, Reliability of AlGaN-based deep UV LEDs on sapphire. SPIE 6134, 61340P (2006). CrossRefGoogle Scholar
  5. 5.
    J.P. Zhang, H.M. Wang, W.H. Sun, V. Adivarahan, S. Wu, A. Chitnis, C.Q. Chen, M. Shatalov, E. Kuokstis, J.W. Yang, M. Asif Khan, High-quality AlGaN layers over pulsed atomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes. J. Electron. Mater. 32(5), 364–370 (2003). CrossRefGoogle Scholar
  6. 6.
    Z. Gong, M. Gaevski, V. Adivarahan, W. Sun, M. Shatalov, M. Asif Khan, Optical power degradation mechanisms in AlGaN-based 280 nm deep ultraviolet light-emitting diodes on sapphire. Appl. Phys. Lett. 88(12), 1–4 (2006). CrossRefGoogle Scholar
  7. 7.
    Z. Gong, S. Chhajed, M.E. Gaevski, W.H. Sun, V. Adivarahan, M. Shatalov, M. Asif Khan, Reliability and degradation modes of 280 nm deep UV LEDs on sapphire. Mater. Res. Soc. Symp. Proc. 892, 169–174 (2006)Google Scholar
  8. 8.
    M.L. Reed, M. Wraback, A. Lunev, Y. Bilenko, X. Hu, A. Sattu, J. Deng, M. Shatalov, R. Gaska, Device self-heating effects in deep UV LEDs studied by systematic variation in pulsed current injection. Phys. Status Solidi Curr. Top. Solid State Phys. 5(6), 2053–2055 (2008). CrossRefGoogle Scholar
  9. 9.
    C.G. Moe, M.L. Reed, G.A. Garrett, A.V. Sampath, T. Alexander, H. Shen, M. Wraback, Y. Bilenko, M. Shatalov, J. Yang, W. Sun, J. Deng, R. Gaska, Current-induced degradation of high performance deep ultraviolet light emitting diodes. Appl. Phys. Lett. 96(21), 213512 (2010). CrossRefGoogle Scholar
  10. 10.
    A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, M.S. Shur, Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy. Appl. Phys. Lett. 95(18), 181914 (2009). CrossRefGoogle Scholar
  11. 11.
    M. Asif Khan, S. Hwang, J. Lowder, V. Adivarahan, Q. Fareed, Reliability issues in AlGaN based deep ultraviolet light emitting diodes. 2009 IEEE Int. Reliab. Phys. Symp. 89–93.
  12. 12.
    R. Jain, W. Sun, J. Yang, M. Shatalov, X. Hu, A. Sattu, A. Lunev, J. Deng, I. Shturm, Y. Bilenko, R. Gaska, M.S. Shur, Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl. Phys. Lett. 93(5), 110–113 (2008). CrossRefGoogle Scholar
  13. 13.
    S. Sawyer, S.L. Rumyantsev, M.S. Shur, Degradation of AlGaN-based ultraviolet light emitting diodes. Solid State Electron. 52(6), 968–972 (2008). CrossRefGoogle Scholar
  14. 14.
    G. Meneghesso, S. Levada, E. Zanoni, S. Podda, G. Mura, M. Vanzi, A. Cavallini, A. Castaldini, S. Du, I. Eliashevich, Failure modes and mechanisms of DC-aged GaN LEDs. Phys. Status Solidi 194(2), 389–392 (2002).<389::AID-PSSA389>3.0.CO;2-O CrossRefGoogle Scholar
  15. 15.
    S. Bychikhin, D. Pogany, L.K.J. Vandamme, G. Meneghesso, E. Zanoni, Low-frequency noise sources in as-prepared and aged GaN-based light-emitting diodes. J. Appl. Phys. 97(12), 123714 (2005). CrossRefGoogle Scholar
  16. 16.
    X. Chen, A. Pedersen, A.D. van Rheenen, Effect of electrical and thermal stress on low-frequency noise characteristics of laser diodes. Microelectron. Reliab. 41(1), 105–110 (2001). CrossRefGoogle Scholar
  17. 17.
    A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, M.S. Shur, Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes. J. Appl. Phys. 108(9), 93113 (2010). CrossRefGoogle Scholar
  18. 18.
    A. Pinos, S. Marcinkevičius, M.S. Shur, High current-induced degradation of AlGaN ultraviolet light emitting diodes. J. Appl. Phys. 109(10) (2011). CrossRefGoogle Scholar
  19. 19.
    M. Meneghini, M. Pavesi, N. Trivellin, R. Gaska, E. Zanoni, G. Meneghesso, Reliability of deep-UV light-emitting diodes. IEEE Trans. Device Mater. Reliab. 8(2), 248–254 (2008). CrossRefGoogle Scholar
  20. 20.
    J.P. Zhang, X. Hu, Y. Bilenko, J. Deng, A. Lunev, M.S. Shur, R. Gaska, M. Shatalov, J.W. Yang, M. Asif Khan, AlGaN-based 280 nm light-emitting diodes with continuous-wave power exceeding 1 mW at 25 mA. Appl. Phys. Lett. 85(23), 5532–5534 (2004). CrossRefGoogle Scholar
  21. 21.
    O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, K. Streubel, Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes. Appl. Phys. Lett. 79(18), 2895–2897 (2001). CrossRefGoogle Scholar
  22. 22.
    T. Yanagisawa, T. Kojima, Degradation of InGaN blue light-emitting diodes under continuous and low-speed pulse operations. Microelectron. Reliab. 43(6), 977–980 (2003). CrossRefGoogle Scholar
  23. 23.
    M. Meneghini, N. Trivellin, L. Trevisanello, A. Lunev, J. Yang, Y. Bilenko, W. Sun, M. Shatalov, R. Gaska, E. Zanoni, G. Meneghesso, Combined optical and electrical analysis of AlGaN-based deep-UV LEDs reliability. IEEE Int. Reliab. Phys. Symp. Proc. 441–445 (2008).
  24. 24.
    F. Rossi, M. Pavesi, M. Meneghini, G. Salviati, M. Manfredi, G. Meneghesso, A. Castaldini, A. Cavallini, L. Rigutti, U. Strass, U. Zehnder, E. Zanoni, Influence of short-term low current dc aging on the electrical and optical properties of InGaN blue light-emitting diodes. J. Appl. Phys. 99(5), 10–17 (2006). CrossRefGoogle Scholar
  25. 25.
    M. Meneghini, D. Barbisan, L. Rodighiero, G. Meneghesso, E. Zanoni, Analysis of the physical processes responsible for the degradation of deep-ultraviolet light emitting diodes. Appl. Phys. Lett. 97(14), 143506 (2010). CrossRefGoogle Scholar
  26. 26.
    M. Meneghini, D. Barbisan, Y. Bilenko, M. Shatalov, J. Yang, R. Gaska, G. Meneghesso, E. Zanoni, Defect-related degradation of deep-UV-LEDs. Microelectron. Reliab. 50(9–11), 1538–1542 (2010). CrossRefGoogle Scholar
  27. 27.
    V. Adivarahan, W. Sun, A. Chitnis, M. Shatalov, S. Wu, H. Maruska, M. Asif Khan, 250 nm AlGaN light-emitting diodes. Appl. Phys. Lett. 85(12), 2175 (2004). CrossRefGoogle Scholar
  28. 28.
    N. Otsuka, A. Tsujimura, Y. Hasegawa, G. Sugahara, M. Kume, Y. Ban, Room temperature 339 nm emission from Al0.13Ga0.87N/Al0.10Ga0.90N double heterostructure light-emitting diode on sapphire substrate. Jpn. J. Appl. Phys. 39(Part 2, No. 5B), L445–L448 (2000). CrossRefGoogle Scholar
  29. 29.
    J.S. Park, D.W. Fothergill, P. Wellenius, S.M. Bishop, J.F. Muth, R.F. Davis, Origins of parasitic emissions from 353 nm AlGaN-based ultraviolet light emitting diodes over SiC substrates. Jpn J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 45(5 A), 4083–4086 (2006). CrossRefGoogle Scholar
  30. 30.
    J. Grandusky, Y. Cui, S. Gibb, M. Mendrick, L. Schowalter, Performance and reliability of ultraviolet-C pseudomorphic light emitting diodes on bulk AlN substrates. Phys. Status Solidi Curr. Top. Solid State Phys. 7(7–8), 2199–2201 (2010). CrossRefGoogle Scholar
  31. 31.
    K. Kitamura, J.R. Grandusky, C.G. Moe, J. Chen, M.C. Mendrick, Y. Li, M. Toita, K. Nagase, T. Morishita, H. Ishii, S. Yamada, L.J. Schowalter, S3-P1: reliability and lifetime of pseudomorphic UVC leds on AlN substrate under various stress condition. Lester Eastman Conference 2014High Performance Devices, LEC (2014), pp. 2–6.
  32. 32.
    S. Tomiya, T. Hino, S. Goto, M. Takeya, M. Ikeda, Dislocation related issues in the degradation of GaN-based laser diodes. IEEE J. Sel. Top. Quantum Electron. 10(6), 1277–1286 (2004). CrossRefGoogle Scholar
  33. 33.
    S.N. Lee, H.S. Paek, J.K. Son, H. Kim, K.K. Kim, K.H. Ha, O.H. Nam, Y. Park, Effects of Mg dopant on the degradation of InGaN multiple quantum wells in AlInGaN-based light emitting devices. J. Electroceram. 23(2–4), 406–409 (2009). CrossRefGoogle Scholar
  34. 34.
    A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, T. Mukai, High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics. Semicond. Sci. Technol. 29(8), 84005 (2014). CrossRefGoogle Scholar
  35. 35.
    J. Rass, T. Kolbe, N. Lobo Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, M. Kneissl, High power UV-B LEDs with long lifetime. Proc. SPIE Gall. Nitride Mater. Devices X 9363, 93631K (2015). CrossRefGoogle Scholar
  36. 36.
    J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. Lobo Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, M. Kneissl, Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature. J. Appl. Phys. 118(9) (2015). CrossRefGoogle Scholar
  37. 37.
    J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. Lobo Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, M. Kneissl, Temperature induced degradation of InAlGaN multiple-quantum well UV-B LEDs. MRS Proc. 1792 (2015).
  38. 38.
    Q. Shan, D.S. Meyaard, Q. Dai, J. Cho, E. Fred Schubert, J. Kon Son, C. Sone, Transport-mechanism analysis of the reverse leakage current in GaInN light-emitting diodes. Appl. Phys. Lett. 99(25), 253506 (2011). CrossRefGoogle Scholar
  39. 39.
    M.W. Moseley, A.A. Allerman, M.H. Crawford, J.J. Wierer, M.L. Smith, A.M. Armstrong, Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes. J. Appl. Phys. 117(9) (2015). CrossRefGoogle Scholar
  40. 40.
    K. Orita, S. Takigawa, M. Yuri, T. Tanaka, M. Meneghini, N. Trivellin, L.-R. Trevisanello, E. Zanoni, G. Meneghesso, Analysis of diffusion involved in degradation of InGaN-based laser diodes. 2009 IEEE International Reliability Physics Symposium (2009), pp. 736–740.
  41. 41.
    M. Meneghini, L.-R. Trevisanello, S. Levada, G. Meneghesso, G. Tamiazzo, E. Zanoni, T. Zahner, U. Zehnder, V. Harle, U. Strauss, Failure mechanisms of gallium nitride leds related with passivation. IEEE International Electron Devices Meeting. IEDM Technical Digest (2005), pp. 1009–1012.
  42. 42.
    J. Glaab, N. Lobo Ploch, J. Rass, T. Kolbe, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, C. Stölmacker, V. Kueller, A. Knauer, S. Einfeldt, M. Weyers, M. Kneissl, Influence of the LED heterostructure on the degradation behavior of (InAlGa)N-based UV-B LEDs. SPIE Opto. 9748, 97481O (2016). CrossRefGoogle Scholar
  43. 43.
    J.C. Zhang, Y.H. Zhu, T. Egawa, S. Sumiya, M. Miyoshi, M. Tanaka, Suppression of the subband parasitic peak by 1 nm i-AlN interlayer in AlGaN deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 93(13) (2008). CrossRefGoogle Scholar
  44. 44.
    T. Kolbe, J. Stellmach, F. Mehnke, M.A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, M. Kneissl, Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes. Phys. Status Solidi Appl. Mater. Sci. 213(1), 210–214 (2016). CrossRefGoogle Scholar
  45. 45.
    M.L. Nakarmi, N. Nepal, J.Y. Lin, H.X. Jiang, Photoluminescence studies of impurity transitions in Mg-doped AlGaN alloys. Appl. Phys. Lett. 94(9), 91903 (2009). CrossRefGoogle Scholar
  46. 46.
    D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, J. Glaab, J. Rass, S. Einfeldt, F. Mehnke, J. Enslin, T. Wernicke, M. Kneissl, Defect-related degradation of AlGaN-Based UV-V LEDs. IEEE Trans. Electron Devices 64(1), 200–205 (2017). CrossRefGoogle Scholar
  47. 47.
    D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, J. Glaab, J. Rass, S. Einfeldt, F. Mehnke, T. Wernicke, M. Kneissl, L. Institut, U. Berlin, I. Festkörperphysik, Defect generation in deep-UV AlGaN-based LEDs investigated by electrical and spectroscopic characterisation. Proc. SPIE 10124, 1–9 (2017). CrossRefGoogle Scholar
  48. 48.
    C. De Santi, M. Meneghini, D. Monti, J. Glaab, M. Guttmann, J. Rass, S. Einfeldt, F. Mehnke, J. Enslin, T. Wernicke, M. Kneissl, G. Meneghesso, E. Zanoni, Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs. Photonics Res. 5(2), 44–51 (2017). CrossRefGoogle Scholar
  49. 49.
    C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, E. Zanoni, Role of defects in the thermal droop of InGaN-based light emitting diodes. J. Appl. Phys. 119(9), 94501 (2016). CrossRefGoogle Scholar
  50. 50.
    W.K. Wang, D.S. Wuu, S.H. Lin, P. Han, R.H. Horng, T.C. Hsu, D.T.C. Huo, M.J. Jou, Y.H. Yu, A. Lin, Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates. IEEE J. Quantum Electron. 41(11), 1403–1409 (2005). CrossRefGoogle Scholar
  51. 51.
    T. Mukai, D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S.I. Nagahama, Investigation of optical-output-power degradation in 365-nm UV-LEDs. Phys. Status Solidi Curr. Top. Solid State Phys. 3(6), 2211–2214 (2006). CrossRefGoogle Scholar
  52. 52.
    W.H. Liu, C.F. Chu, C.C. Cheng, K.H. Hsu, Y.T. Chung, Y.K. Wang, C.C. Li, J.Y. Chu, F.H. Fan, H.C. Cheng, Y.W. Chen, Y.H. Chang, L.W. Shan, T. Doan, C. Tran, Development of high-power UV LEDs for epoxy curing applications. Proc. SPIE 7602, 76021K (2010). CrossRefGoogle Scholar
  53. 53.
    W. Lin, T. Wang, S. Ou, J. Liang, D. Wuu, Improved performance of 365-nm LEDs by inserting an un-doped electron-blocking layer. IEEE Electron Device Lett. 35(4), 467–469 (2014). CrossRefGoogle Scholar
  54. 54.
    F.J. Arques-Orobon, N. Nuñez, M. Vazquez, V. González-Posadas, UV LEDs reliability tests for fluoro-sensing sensor application. Microelectron. Reliab. 54(9–10), 2154–2158 (2014). CrossRefGoogle Scholar
  55. 55.
    H. Chen, H.Y. Shen, S.C. Shei, N.C. Kang, H.C. Lai, Y.C. Chu, H.W. Chang, Exploring failure mechanisms of near ultraviolet AlGaN/GaN light-emitting diodes by reverse-bias stress in water vapour. Int. J. Nanotechnol. 12(1/2), 38 (2015). CrossRefGoogle Scholar
  56. 56.
    D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, Degradation of UV-A LEDs: physical origin and dependence on stress conditions. IEEE Trans. Device Mater. Reliab. 16(2), 213–219 (2016). CrossRefGoogle Scholar
  57. 57.
    T. Li, J. Zhang, H. Wang, Z. Hu, Y. Yu, High-performance light-emitting diodes encapsulated with silica-filled epoxy materials. ACS Appl. Mater. Interfaces 5(18), 8968–8981 (2013). CrossRefGoogle Scholar
  58. 58.
    M. Yazdan Mehr, W.D. Van Driel, S. Koh, G.Q. Zhang, Reliability and optical properties of LED lens plates under high temperature stress. Microelectron. Reliab. 54(11), 2440–2447 (2014). CrossRefGoogle Scholar
  59. 59.
    J.Y. Bae, Y.H. Kim, H.Y. Kim, Y.B. Kim, J. Jin, B.S. Bae, Ultraviolet light stable and transparent sol-gel methyl siloxane hybrid material for UV light-emitting diode (UV LED) encapsulant. ACS Appl. Mater. Interfaces 7(2), 1035–1039 (2015). CrossRefGoogle Scholar
  60. 60.
    J.-Y. Bae, H.-Y. Kim, Y.-W. Lim, Y.-H. Kim, B.-S. Bae, Optically recoverable, deep ultraviolet (UV) stable and transparent sol–gel fluoro siloxane hybrid material for a UV LED encapsulant. RSC Adv. 6(32), 26826–26834 (2016). CrossRefGoogle Scholar
  61. 61.
    Z. Chen, Z. Liu, G. Shen, R. Wen, J. Lv, J. Huo, Y. Yu, Effect of chain flexibility of epoxy encapsulants on the performance and reliability of light-emitting diodes. Ind. Eng. Chem. Res. 55(28), 7635–7645 (2016). CrossRefGoogle Scholar
  62. 62.
    R. Wen, J. Huo, J. Lv, Z. Liu, Y. Yu, Effect of silicone resin modification on the performance of epoxy materials for LED encapsulation. J. Mater. Sci. Mater. Electron. 28(14522), 1–14 (2017). CrossRefGoogle Scholar
  63. 63.
    X. Qiu, J.C.C. Lo, A.W. Shang, S.W.R. Lee, Investigation of reliability of EMC and SMC on reflectance for UV LED applications. 17th International Conference on Thermal Mechanical Multi-Physics Simulation and Expriments in Microelectronics and Microsystems, EuroSimE 2016, vol. 2 (2016), pp. 1–7.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Carlo De Santi
    • 1
    Email author
  • Desiree Monti
    • 1
  • Pradip Dalapati
    • 1
  • Matteo Meneghini
    • 1
  • Gaudenzio Meneghesso
    • 1
  • Enrico Zanoni
    • 1
  1. 1.Department of Information EngineeringUniversity of PadovaPadovaItaly

Personalised recommendations