Advertisement

Sedimentary and Biological Patterns on Mudflats

  • Peter G. BeningerEmail author
  • Diana Cuadrado
  • Johan van de Koppel
Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 7)

Abstract

Apparently featureless ‘flat’ mudflats actually present striking biological patterning beneath the sediment surface, and even slight physical patterning by sediment ripple marks also leads to biological patterning of the surficial biofilm. The more topographically-complex hummock-forming mudflats are characterized by even more striking physical and biological patterning. In this chapter we first consider how the sediment-microbe association resists wave- and current-induced erosion, creating within-sediment structure (microbially-induced sedimentary structures, MISS). These structures may eventually succumb to high-energy erosion, creating superficial irregularity. We then describe how microbial and physical processes conjugate to form the spatially-complex, transitory hummock patterns. Finally, we summarize the biological patterning which emerges from the sedimentary structure and pattern on both flat and hummock mudflats.

Notes

Acknowledgements

We thank Prof. Nora Noffke and Prof. David Paterson for very helpful discussions during the preparation of this chapter.

References

  1. Andersen TJ, Pejrup M (2011) Biological influences on sediment behavior and transport. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science, vol 2. Academic, Waltham, pp 289–309CrossRefGoogle Scholar
  2. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality – an explanation of 1/f noise. Phys Rev Lett 59:381–384PubMedCrossRefGoogle Scholar
  3. Beninger PG, Boldina I (2014) Fine-scale spatial distribution of the temperate infaunal bivalve Tapes (=Ruditapes) philippinarum (Adams and Reeve) on fished and unfished intertidal mudflats. J Exp Mar Biol Ecol 457:128–134CrossRefGoogle Scholar
  4. Blanchard G (1990) Overlapping microscale dispersion patterns of meiofauna and rnicrophytobenthos. Mar Ecol Prog Ser 68:101–111CrossRefGoogle Scholar
  5. Blanchard GF, Paterson DM, Stal LJ, Richard P, Galois R, Huet V, Kelly J, Honeywill C, de Brouwer J, Dyer K, Christie M, Seguignes M (2000) The effect of geomorphological structures on potential biostabilisation by microphytobenthos on intertidal mudflats. Cont Shelf Res 20:1243–1256CrossRefGoogle Scholar
  6. Boldina I, Beninger PG (2013) Fine-scale spatial structure of the exploited infaunal bivalve Cerastoderma edule on the French Atlantic coast. J Sea Res 76:193–200CrossRefGoogle Scholar
  7. Boldina I, Beninger PG (2014) Fine-scale spatial distribution of the common lugworm Arenicola marina, and effects of intertidal clam fishing. Estuar Coast Shelf Sci 143:32–40CrossRefGoogle Scholar
  8. Boldina I, Beninger PG, Le Coz M (2014) Effect of long-term mechanical perturbation on intertidal soft-bottom meiofunal community spatial structure. J Sea Res 85:85–91CrossRefGoogle Scholar
  9. Bruslé J (1981) Food and feeding in grey mullets. In: Oren OH (ed) Aquaculture of grey mullets. Cambridge University Press, Cambridge, pp 185–217Google Scholar
  10. Cady SL, Noffke N (2009) Geobiology: evidence for early life on earth and the search for life on other planets. GSA Today 19:4–10CrossRefGoogle Scholar
  11. Carling PA, Williams JJ, Croudace IW, Amos CL (2009) Formation of mud ridge and runnels in the intertidal zone of the Severn Estuary, UK. Cont Shelf Res 29:1913–1926CrossRefGoogle Scholar
  12. Carpentier A, Como S, Dupuy C, Lefrançois C, Feunteun E (2014) Feeding ecology of Liza spp. in a tidal flat: evidence of the importance of primary production (biofilm) and associated meiofauna. J Sea Res 92:86–91CrossRefGoogle Scholar
  13. Chapman MG (2000) Poor design of behavioural experiments gets poor results: examples from intertidal habitats. J Exp Mar Biol Ecol 250:77–95PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chapman MG, Tolhurst TJ, Murphy RJ, Underwood AJ (2010) Complex and inconsistent patterns of variation in benthos, micro-algae and sediment over multiple spatial scales. Mar Ecol Prog Ser 398:33–47CrossRefGoogle Scholar
  15. Cheverie AV, Hamilton DJ, Coffin MRS, Barbeau MA (2014) Effects of shorebird predation and snail abundance on an intertidal mudflat community. J Sea Res 92:102–114CrossRefGoogle Scholar
  16. Crosetti D, Cataudella S (1994) The mullets. In: Nash CE (ed) Production of aquatic animals: fishes. Elsevier, Amsterdam, pp 253–268Google Scholar
  17. Cuadrado DG, Carmona NB, Bournod CA (2011) Biostabilization of sediments by microbial mats in a temperate siliciclastic tidal flat Bahía Blanca estuary (Argentina). Sediment Geol 237:95–101CrossRefGoogle Scholar
  18. Cuadrado DG, Bournod CN, Pan J, Carmonade NB (2013) Microbially-induced sedimentary structures (MISS) as record of storm action in supratidal modern estuarine setting. Sediment Geol 296:1–8CrossRefGoogle Scholar
  19. Cuadrado DG, Perillo GME, Vitale AJ (2014) Modern microbial mats in siliciclastic tidal flats: evolution, structure and the role of hydrodynamics. Mar Geol 352:367–380CrossRefGoogle Scholar
  20. de Brouwer JFC, Bjelic S, Deckere E, Stal LJ (2000) Interplay between biology and sedimentology in a mudflat (Biezelingse Ham, Westerschelde, the Netherlands). Cont Shelf Res 20:1159–1177CrossRefGoogle Scholar
  21. de los Ríos A, Ascaso C, Wierzchos J (2004) Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl Environ Microbiol 70:569–580PubMedCentralCrossRefGoogle Scholar
  22. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273CrossRefGoogle Scholar
  23. Dupuy C, Mallet C, Guizien K, Montanié H, Bréret M, Mornet F, Fontaine C, Nérota C, Orvainf F (2014) Sequential resuspension of biofilm components (viruses, prokaryotes and protists) as measured by erodimetry experiments in the Brouage mudflat (French Atlantic coast). J Sea Res 92:56–65CrossRefGoogle Scholar
  24. Eriksson PG, Porada H, Banerjee S, Bouougri E, Sarkar S, Bumby AJ (2007) Mat-destruction features. In: Schieber J, Bose P, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of microbial mat features preserved within the siliciclastic rock record. Elsevier, Amsterdam, pp 76–105Google Scholar
  25. Fang H, Shang Q, Chen M, He G (2014) Changes in the critical erosion velocity for sediment colonized by biofilm. Sedimentology 61:648–659CrossRefGoogle Scholar
  26. Fenchel T, Kühl M (2000) Artificial cyanobacterial mats: growth, structure, and vertical zonation patterns. Microb Ecol 40:85–93PubMedPubMedCentralGoogle Scholar
  27. Fernández EM, Spetter CV, Martinez A, Cuadrado DG, Avena MJ, Marcovecchio JE (2016) Carbohydrate production by microbial mats communities in tidal flat from Bahía Blanca Estuary (Argentina). Environ Earth Sci 75:641CrossRefGoogle Scholar
  28. Findlay SEG (1981) Small-scale spatial distribution of meiofauna on a mud- and sandflat. Estuar Coast Shelf Sci 12:471–484CrossRefGoogle Scholar
  29. Findlay SEG (1982) Influence of sampling scale on apparent distribution of meiofauna on a sandflat. Estuaries 5:322–324CrossRefGoogle Scholar
  30. Flach EC (1992) Disturbance of benthic infauna by sediment-reworking activities of the lugworm Arenicola marina. Neth J Sea Res 30:81–89CrossRefGoogle Scholar
  31. Flach EC, Beukema JJ (1994) Density-governing mechanisms in populations of the lugworm Arenicola marina on tidal flats. Mar Ecol Prog Ser 115:139–149CrossRefGoogle Scholar
  32. Flach EC, de Bruin W (1993) Effects of Arenicola marina and Cerastoderma edule on distribution, abundance and population structure of Corophium volutator in Gullmarsfjorden, Western Sweden. Sarsia 78:105–118CrossRefGoogle Scholar
  33. Folk RL, Andrews PB, Lewis DW (1970) Detrital sedimentary rock classification and nomenclature for use in New Zealand. N Z J Geol Geophys 13:937–968CrossRefGoogle Scholar
  34. Friend PL, Lucas CH, Holligan PM, Collins MB (2008) Microalgal mediation of ripple mobility. Geobiology 6:70–82PubMedGoogle Scholar
  35. Gerdes G (2007) Structures left by modern microbial mats in their host sediments. In: Schieber J, Bose P, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of microbial mat features preserved within the clastic rock record. Elsevier, Amsterdam, pp 5–38Google Scholar
  36. Guichard F, Halpin PM, Allison GW, Lubchenco J, Menge BA (2003) Mussel disturbance dynamics: signatures of oceanographic forcing from local interactions. Am Nat 161:889–904PubMedCrossRefGoogle Scholar
  37. Hagadorn JW, McDowell C (2012) Microbial influence on erosion, grain transport and bedform genesis in sandy substrates under unidirectional flow. Sedimentology 59:795–808CrossRefGoogle Scholar
  38. Hall-Stoodley L, Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13:228–233PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108PubMedCrossRefGoogle Scholar
  40. Hjülstrøm F (1935) Studies of the morphological activity of rivers as illustrated by the river Fyris. Bull Geol Inst Univ Uppsala 25:221–528Google Scholar
  41. Jiménez A, Elner RW, Favaro C, Rickards K, Ydenberg RC (2015) Intertidal biofilm distribution underpins differential tide-following behavior of two sandpiper species (Calidris mauri and Calidris alpina) during northward migration. Estuar Coast Shelf Sci 155:8–16CrossRefGoogle Scholar
  42. Jørgensen BB (1994) Diffusion processes and boundary layers in microbial mats. In: Stal LJ, Caumette P (eds) Microbial mats. NATO ASI series (Series G: Ecological sciences), vol 35. Springer, BerlinGoogle Scholar
  43. Kaźmierczak J, Fenchel T, Kühl M, Kempe S, Kremer B, Łącka B, Małkowski K (2015) CaCO3 precipitation in multilayered cyanobacterial mats: clues to explain the alternation of micrite and sparite layers in calcareous stromatolites. Life 5:744–769PubMedPubMedCentralCrossRefGoogle Scholar
  44. Krumbein WE (1979) Photolithotrophic and chemoorganotrophic activity of bacteria and algae as related to beach rock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiol J 1:139–203CrossRefGoogle Scholar
  45. Lanuru M, Riethmüller R, Bernem C, Heymann K (2007) The effect of bedforms (crest and trough systems) on sediment erodibility on a back-barrier tidal flat of the East Frisian Wadden Sea, Germany. Estuar Coast Shelf Sci 72:603–614CrossRefGoogle Scholar
  46. Li B, Cozzoli F, Soissons LM, Boumab TJ, Chen L (2017) Effects of bioturbation on the erodibility of cohesive versus non-cohesive sediments along a current-velocity gradient: a case study on cockles. J Exp Mar Biol Ecol 496:84–90CrossRefGoogle Scholar
  47. Lubarsky HV, Hubas C, Chocholek M, Larson F, Manz W, Paterson DM, Gerbersdorf SU (2010) The stabilisation potential of individual and mixed assemblages of natural bacteria and microalgae. PLoS One 5(11):e13794.  https://doi.org/10.1371/journal.pone.0013794CrossRefPubMedPubMedCentralGoogle Scholar
  48. Madsen KN, Nilson P, Sundbäck K (1993) The influence of benthic microalgae on the stability of a subtidal shallow water sediment. J Exp Mar Biol Ecol 170:159–177CrossRefGoogle Scholar
  49. Miller DC, Geider RJ, MacIntyre HL (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. II Role in sediment stability and shallow-water food webs. Estuaries 19:202–212CrossRefGoogle Scholar
  50. Murphy RJ, Tolhurst TJ, Chapman MG, Underwood AJ (2008) Spatial variation of chlorophyll on estuarine mudflats determined by field-based remote sensing. Mar Ecol Prog Ser 365:45–55CrossRefGoogle Scholar
  51. Neu TR (1994) Biofilms and microbial mats. In: Krumbein WE, Paterson D, Stal L (eds) Biostabilization of sediments. Oldenburg, BIS-Verlag, pp 9–17Google Scholar
  52. Neumeier M, Weigert J, Schaffler A, Wehrwein G, Muller-Ladner U, Scholmerich J, Wrede C, Buechler C (2006) Different effects of adiponectin isoforms in human monocytic cells. J Leukoc Biol 79:803–808PubMedCrossRefGoogle Scholar
  53. Noffke N (2010) Microbial mats in sandy deposits from the Archean era to today. Springer, BerlinGoogle Scholar
  54. Noffke N, Awramik SM (2013) Stromatolites and MISS—differences between relatives. GSA Today 23:4–9CrossRefGoogle Scholar
  55. Noffke N, Krumbein WE (1999) A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics. Sedimentology 46:417–426CrossRefGoogle Scholar
  56. Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures-a new category within the classification of primary sedimentary structures. J Sediment Res 71:649–656CrossRefGoogle Scholar
  57. Noffke N, Knoll AH, Grotzinger JP (2002) Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the Upper Neoproterozoic Nama Group, Namibia. Palaios 17:533–544CrossRefGoogle Scholar
  58. Noffke N, Christian D, Wacey D, Hazen RM (2013a) Microbially induced sedimentary structures recording a complex microbial ecosystem in the 3.5 Ga Dresser Formation, Pilbara, Western Australia. Astrobiology 13:1–22CrossRefGoogle Scholar
  59. Noffke N, Decho AW, Stoodley P (2013b) Slime through time: the fossil record of prokaryote evolution. PALAIOS 28:1–5CrossRefGoogle Scholar
  60. Pan J, Bournod CN, Pizani NV, Cuadrado DG, Carmona NB (2013) Characterization of microbial mats from a siliciclastic tidal flat (Bahía Blanca estuary, Argentina). Geomicrobiol J 30:665–674CrossRefGoogle Scholar
  61. Pascual M, Guichard F (2005) Criticality and disturbance in spatial ecological systems. Trends Ecol Evol 20:88–95PubMedCrossRefPubMedCentralGoogle Scholar
  62. Passarelli C, Olivier F, Paterson DM, Meziane T, Hubas C (2014) Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res 92:92–101CrossRefGoogle Scholar
  63. Paterson DM (1995) Biogenic structure of early sediment fabric visualized by low temperature scanning electron microscopy. J Geol Soc 152:131–140CrossRefGoogle Scholar
  64. Pierre G, Zhao J, Orvain F, Dupuy C, KleinGL GM, Maugard T (2014) Seasonal dynamics of extracellular polymeric substances (EPS) in surface sediments of a diatom-dominated intertidal mudflat (Marennes-Oléron France). J Sea Res 92:26–35CrossRefGoogle Scholar
  65. Rietkerk M, van de Koppel J (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol 23:169–175PubMedCrossRefPubMedCentralGoogle Scholar
  66. Rodrigues AM, Meireles S, Pereira T, Gama A, Quintino V (2006) Spatial patterns of benthic macroinvertebrates in intertidal areas of a Southern European estuary: the Tagus, Portugal. Hydrobiologia 555:99–113CrossRefGoogle Scholar
  67. Schieber J, Bose PK, Eriksson PG, Sarkar S (2007) Paleogeography of microbial mats in terrigenous clastic-environmental distribution of associated sedimentary features and the role of geologic time. In: Schieber J, Bose P, Eriksson PG, Bannerjee S, Sarkar S, Altermann W, Catuneau O (eds) Atlas of microbial mat features preserved within the siliciclastic rock record. Elsevier, Amsterdam, pp 267–275Google Scholar
  68. Schultze-Lam S, Fortin D, Davis BS, Beveridge TJ (1996) Mineralization of bacterial surfaces. Chem Geol 132:171–181CrossRefGoogle Scholar
  69. Seuront L, Spilmont N (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Phys A Stat Mech Appl 313:513–539CrossRefGoogle Scholar
  70. Shields A (1936) Application of similarity principles and turbulence research to bed-load movement. Mitt Preussischen Versuchsanstalt fur Wasserbau und Schiffbau 26:5–24Google Scholar
  71. Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245CrossRefGoogle Scholar
  72. Stal LJ, de Brouwer JFC (2003) Biofilm formation by benthic diatoms and their influence on the stabilization of intertidal mudflats. Berichte-Forschungszentrum Terramare 12:109–111Google Scholar
  73. Stal LJ, de Brouwer JFC (2005) Diatom biofilms and the stability of intertidal mudflats. Geophys Res Abstr 7:20–28Google Scholar
  74. Steele DJ, Franklin DJ, Underwood JC (2014) Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms. Biofouling 30:987–998PubMedPubMedCentralCrossRefGoogle Scholar
  75. Stolz J (2000) Structure of microbial mats and biofilms. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 1–8Google Scholar
  76. Stoodley P (2016) Flow disrupts communication. Nat Microbiol 1:15012PubMedCrossRefGoogle Scholar
  77. Stoodley P, Dodds I, Boyle JD, Lappin-Scott HM (1999) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19S–28SCrossRefGoogle Scholar
  78. Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002) Biofilm material properties as related to shearinduced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367PubMedCrossRefPubMedCentralGoogle Scholar
  79. Tolhurst TJ, Watts CW, Vardy S, Saunders JE, Consalvey MC, Paterson DM (2008) The effects of simulated rain on the erosion threshold and biogeochemical properties of intertidal sediments. Cont Shelf Res 28:1217–1230CrossRefGoogle Scholar
  80. Ubertini M, Lefebvre S, Rakotomalala C, Orvain F (2015) Impact of sediment grain-size and biofilm age on epipelic microphytobenthos resuspension. J Exp Mar Biol Ecol 467:52–64CrossRefGoogle Scholar
  81. Underwood GJC (1997) Microalgal colonization in a salt-marsh restoration scheme. Estuar Coast Shelf Sci 44:471–481CrossRefGoogle Scholar
  82. Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29:93–153CrossRefGoogle Scholar
  83. Underwood GJC, Paterson DM (2003) The importance of extracellular carbohydrate production by marine epipelic diatoms. Adv Bot Res 40:184–240Google Scholar
  84. Underwood GJC, Smith DJ (1998) Predicting epipelic diatom exopolymer concentrations in intertidal sediments from sediment chlorophyll a. Microb Ecol 35:116–125PubMedCrossRefGoogle Scholar
  85. Underwood GJC, Paterson DM, Parkes RJ (1995) The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnol Oceanogr 40:1243–1253CrossRefGoogle Scholar
  86. Underwood GJC, Boulcott M, Raines CA, Waldron K (2004) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. J Phycol 40:293–304CrossRefGoogle Scholar
  87. Van Colen C, Underwood GJC, Serôdio J, Paterson DM (2014) Ecology of intertidal microbial biofilms: mechanisms patterns and future research needs. J Sea Res 92:2–5CrossRefGoogle Scholar
  88. Van de Koppel J, Herman PMJ, Thoolen P, Heip CHR (2001) Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology 82:3449–3461CrossRefGoogle Scholar
  89. van der Wal D, Herman PMJ, Forster RM, Ysebaert T, Rossi F, Knaeps E, Plancke YMG, Ides SJ (2008) Distribution and dynamics of intertidal macrobenthos predicted from remote sensing: response to microphytobenthos and environment. Mar Ecol Prog Ser 367:57–72CrossRefGoogle Scholar
  90. Van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113:3–25CrossRefGoogle Scholar
  91. Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations processes and products. Palaeogeogr Palaeoclimatol Palaeoecol 219:87–100CrossRefGoogle Scholar
  92. Wahl WK, Lok T, van der Meer J, Piersm T, Weissing J (2005) Spatial clumping of food and social dominance affect interference competition among ruddy turnstones. Behav Ecol 16:834–844CrossRefGoogle Scholar
  93. Weerman EJ, van de Koppel J, Eppinga MB, Montserrat F, Liu QX, Herman PMJ (2010) Spatial self-organization on intertidal mudflats through biophysical stress divergence. Am Nat 176:15–32CrossRefGoogle Scholar
  94. Weerman EJ, Herman PMJ, van de Koppel J (2011a) Macrobenthos abundance and distribution on a spatially patterned intertidal flat. Mar Ecol Prog Ser 440:95–103CrossRefGoogle Scholar
  95. Weerman EJ, Herman PMJ, van de Koppel J (2011b) Top-down control inhibits spatial self-organization of a patterned landscape. Ecology 92:487–495PubMedCrossRefPubMedCentralGoogle Scholar
  96. Weerman EJ, Van Belzen J, Rietkerk M, Temmerman S, Kefi S, Herman PMJ, Van de Koppel J (2012) Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem. Ecology 93:608–618PubMedCrossRefPubMedCentralGoogle Scholar
  97. Whitehouse R, Bassoullet P, Dyer K, Mitchener H, Roberts W (2000) The influence of bedforms on flow and sediment transport over intertidal mudflats. Cont Shelf Res 20:1099–1124CrossRefGoogle Scholar
  98. Wolf G (2007) Kinetic modeling of phototrophic biofilms: the PHOBIA model. Biotechnol Bioeng 97:1064–1079PubMedCrossRefPubMedCentralGoogle Scholar
  99. Yallop ML, de Winder B, Paterson DM, Stal LJ (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar Coast Shelf Sci 39:565–582CrossRefGoogle Scholar
  100. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Peter G. Beninger
    • 1
    Email author
  • Diana Cuadrado
    • 2
  • Johan van de Koppel
    • 3
  1. 1.Faculté des Sciences, MMS, Laboratoire de Biologie MarineUniversité de NantesNantesFrance
  2. 2.Instituto Argentino de Oceanografía-CONICETBahia BlancaArgentina
  3. 3.Royal Netherlands Institute for Sea ResearchYersekeThe Netherlands

Personalised recommendations