Advertisement

Mudflat Ecosystem Engineers and Services

  • Claire Passarelli
  • Cédric Hubas
  • David M. Paterson
Chapter
Part of the Aquatic Ecology Series book series (AQEC, volume 7)

Abstract

Ecosystem engineers play a fundamental role in the creation, maintenance and transformation of habitats in tidal flats. Highly diverse in terms of size, phylogeny, and effect on their environment, they can facilitate or hinder a number of organisms, but generally have a positive influence on both the abundance and the diversity of mudflat organisms. The magnitude of the engineering effect is, however, largely dependent on the biotic and abiotic environment of the engineer. In particular, stressful habitats such as mudflats host a large number of ecosystem engineers; understanding interactions between them, and how they vary with abiotic variables, is therefore of crucial importance, to evaluate how ecosystem engineers affect benthic communities and ecosystem functioning. Such understanding will also help human populations which benefit from mudflat organisms and/or functioning (i.e. which derive ecosystem services from them), to maintain and manage the sustainably of tidal flats, in a way which maintains human health and well-being.

Notes

Acknowledgements

CP has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 702217, and this support is gratefully acknowledged. DMP received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland funded by the Scottish Funding Council; grant reference HR09011) and contributing institutions and work reported stems from support provided by the Templeton Foundation (JTF number 60501) and the NERC Blue-coast consortium (NE/N016009/1).

References

  1. Agasse A, Boyen C, Durand P, Chaussade M (2015) Polysaccharides marins pour les santés végétale, animale et humaine. In: Paper presented at the Colloque Polymerix 2015, Rennes (France)Google Scholar
  2. Altieri AH, Silliman BR, Bertness MD (2007) Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am Nat 169:195–206PubMedCrossRefGoogle Scholar
  3. Alvarez MF, Addino M, Iribarne O, Botto F (2015) Combined engineering effects of clams and crabs on infaunal assemblages and food availability in intertidal systems. Mar Ecol Prog Ser 540:57–71CrossRefGoogle Scholar
  4. Alves RMS, Vanaverbeke J, Bouma TJ, Guarini JM, Vincx M, Van Colen C (2017) Effects of temporal fluctuation in population processes of intertidal Lanice conchilega (Pallas, 1766) aggregations on its ecosystem engineering. Estuar Coast Shelf Sci 188:88–98Google Scholar
  5. Andersen TJ, Jensen KT, Lund-Hansen L, Mouritsen KN, Pejrup M (2002) Enhanced erodibility of fine-grained marine sediments by Hydrobia ulvae. J Sea Res 48:51–58CrossRefGoogle Scholar
  6. Bateman DC, Bishop MJ (2017) The environmental context and traits of habitat-forming bivalves influence the magnitude of their ecosystem engineering. Mar Ecol Prog Ser 563:95–110CrossRefGoogle Scholar
  7. Beaumont NJ, Austen MC, Mangi SC, Townsend M (2008) Economic valuation for the conservation of marine biodiversity. Mar Pollut Bull 56:386–396PubMedCrossRefGoogle Scholar
  8. Bell SS (1985) Habitat complexity of polychaete tube-caps: influence of architecture on dynamics of a meioepibenthic assemblage. J Mar Res 43:647–671CrossRefGoogle Scholar
  9. Berke SK (2010) Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integr Comp Biol 50:147–157PubMedCrossRefGoogle Scholar
  10. Bertness MD (1984) Habitat and community modification by an introduced herbivorous snail. Ecology 65:370–381CrossRefGoogle Scholar
  11. Bertness MD, Leonard GH (1997) The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78:1976–1989CrossRefGoogle Scholar
  12. Black KS, Tolhurst TJ, Paterson DM, Hagerthey SE (2002) Working with natural cohesive sediments. J Hydraul Eng 128:2–8CrossRefGoogle Scholar
  13. Boldina I, Beninger PG (2014) Fine-scale spatial distribution of the common lugworm Arenicola marina, and effects of intertidal clam fishing. Estuar Coast Shelf Sci 143:32–40CrossRefGoogle Scholar
  14. Boogert NJ, Paterson DM, Laland KN (2006) The implications of niche construction and ecosystem engineering for conservation biology. Bioscience 56:570–578CrossRefGoogle Scholar
  15. Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27CrossRefGoogle Scholar
  16. Borja A, Elliot M, Uyarra MC, Carstensen J, Mea M (2017) Editorial: Bridging the gap between policy and science in assessing the health status of marine ecosystems. Front Mar Sci 4:32CrossRefGoogle Scholar
  17. Bouma TJ, Olenin S, Reise K, Ysebaert T (2009) Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses. Helgol Mar Res 63:95–106CrossRefGoogle Scholar
  18. Boyer KE, Fong P (2005) Co-occurrence of habitat-modifying invertebrates: effects on structural and functional properties of a created salt marsh. Oecologia 143:619–628PubMedCrossRefGoogle Scholar
  19. Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125CrossRefGoogle Scholar
  20. Caliman A, Carneiro LS, Bozelli RL, Farjalla VF, Esteves FA (2011) Bioturbating space enhances the effects of non-additive interactions among benthic ecosystem engineers on cross-habitat nutrient regeneration. Oikos 120:1639–1648CrossRefGoogle Scholar
  21. Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20CrossRefGoogle Scholar
  22. Chennu A, Volkenborn N, de Beer D, Wethey DS, Woodin SA, Polerecky L (2015) Effects of bioadvection by Arenicola marina on microphytobenthos in permeable sediments. PLoS One 10:e0134236PubMedPubMedCentralCrossRefGoogle Scholar
  23. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  24. Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the roles of ecosystem engineers. Oikos 97:153–166CrossRefGoogle Scholar
  25. Cruz Sueiro M, Bortolus A, Schwindt E (2011) Habitat complexity and community composition: relationships between different ecosystem engineers and the associated macroinvertebrate assemblages. Helgol Mar Res 65:467–477CrossRefGoogle Scholar
  26. Daborn GR, Amos CL, Brylinsky M, Christian H, Drapeau G, Faas RW, Grant J, Long B, Paterson DM, Perillo GME, Piccolo MC (1993) An ecological cascade effect: migratory birds affect stability of intertidal sediments. Limnol Oceanogr 38:225–231Google Scholar
  27. Dade WB, Davis JD, Nichols PD, Nowell ARM, Thistle D, Trexler MB, White DC (1990) Effects of bacterial exopolymer adhesion on the entrainment of sand. Geomicrobiol J 8:1–16CrossRefGoogle Scholar
  28. Darwin CMA (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonCrossRefGoogle Scholar
  29. Davoult D, Migné A, Créach A, Gévaert F, Hubas C, Spilmont N, Boucher G (2009) Spatio-temporal variability of intertidal benthic primary production and respiration in the western part of the Mont Saint-Michel Bay (Western English Channel, France). Hydrobiologia 620:163–172CrossRefGoogle Scholar
  30. Defew EC, Tolhurst TJ, Paterson DM, Hagerthey SE (2003) Can the stability of intertidal sediments be predicted from proxy parameters? An in situ investigation. In: Raffaelli D, Solan M, Paterson DM, Buck AL, Pomfret JR (eds) The estuaries and coasts of north-east Scotland. Coastal Zone Topics, 5. Estuarine and Coastal Sciences Association, Aberdeen, pp 61–70Google Scholar
  31. Dodd M, Papineau D, Grenne T, Slack JF, Rittner M, Pirajino F, O'Neil J, Little CTS (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–64PubMedCrossRefGoogle Scholar
  32. Eckman JE, Duggins DO, Siddon CE (2003) Current and wave dynamics in the shallow subtidal: implications to the ecology of understory and surface-canopy kelps. Mar Ecol Prog Ser 265:45–56CrossRefGoogle Scholar
  33. Eklöf JS, Van der Heide T, Donadi S, van der Zee EM, O’Hara R, Eriksson BK (2011) Habitat-mediated facilitation and counteracting ecosystem engineering interactively influence ecosystem responses to disturbance. PLoS One 6:e23229PubMedPubMedCentralCrossRefGoogle Scholar
  34. Eklöf JS, Donadi S, van der Heide T, van der Zee EM, Eriksson BK (2015) Effects of antagonistic ecosystem engineers on macrofauna communities in a patchy, intertidal mudflat landscape. J Sea Res 97:56–65CrossRefGoogle Scholar
  35. Extended Evolutionnary Synthesis (2016) http://extendedevolutionarysynthesis.com/about-the-ees/. Accessed 17 Jan 2017
  36. Fonseca MS, Fisher JS, Zieman JC, Thayer GW (1982) Influence of the seagrass, Zostera marina L., on current flow. Estuar Coast Shelf Sci 15:351–358CrossRefGoogle Scholar
  37. Forster S, Graf G (1995) Impact of irrigation on oxygen flux into the sediment: intermittent pumping by Callianasse subterranea and “piston-pumping” by Lanice conchilega. Mar Biol 123:335–346CrossRefGoogle Scholar
  38. Forster RM, Créach V, Sabbe K, Vyverman W, Stal LJ (2006) Biodiversity-ecosystem function relationship in microphytobenthic diatoms of the Westerchelde estuary. Mar Ecol Prog Ser 311:191–201CrossRefGoogle Scholar
  39. Friedrichs M, Graf G, Springer B (2000) Skimming flow induced over a simulated polychaete tube lawn at low population densities. Mar Ecol Prog Ser 192:219–228CrossRefGoogle Scholar
  40. Friedrichs M, Leipe T, Peine F, Graf G (2009) Impact of macrozoobenthic structures on near-bed sediment fluxes. J Mar Syst 75:336–347CrossRefGoogle Scholar
  41. Ganthy F, Sottolichio A, Verney R (2013) Seasonal modification of tidal flat sediment dynamics by seagrass meadows of Zostera noltii (Bassin d’Arcachon, France). J Mar Syst 109-110:S233–S240CrossRefGoogle Scholar
  42. Gerbersdorf SU, Bittner R, Lubarsky HV, Manz W, Paterson DM (2009) Microbial assemblages as ecosystem engineers of sediment stability. J Soils Sediments 9:640–652CrossRefGoogle Scholar
  43. Gribben PE, Byers JE, Clements M, McKenzie LA, Steinberg PD, Wright JT (2009) Behavioural interactions between ecosystem engineers control community species richness. Ecol Lett 12:1127–1136PubMedCrossRefGoogle Scholar
  44. Hagerthey SE, Defew EC, Paterson DM (2002) Influence of Corophium volutator and Hydrobia ulvae on intertidal benthic diatom assemblages under different nutrient and temperature regimes. Mar Ecol Prog Ser 245:47–59CrossRefGoogle Scholar
  45. Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210:1518–1525PubMedCrossRefGoogle Scholar
  46. Hanley N, Barbier E (2009) Pricing nature: cost-benefit analysis and environmental policy. Edward Elgar, CheltenhamGoogle Scholar
  47. Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2007) Ecosystem engineering in space and time. Ecol Lett 10:153–164PubMedCrossRefGoogle Scholar
  48. Hedrick PW, Ginevan ME, Ewing EP (1976) Genetic polymorphism in heterogeneous environments. Annu Rev Ecol Evol Syst 7:1–32CrossRefGoogle Scholar
  49. Heinz Centre for Science Economics and the Environment (2000) Evaluation of erosion hazards. Report for Federal Emergency Management Agency, Washington, DCGoogle Scholar
  50. Hochard S, Pinazo C, Grenz C, Burton Evans JL, Pringault O (2010) Impact of microphytobenthos on the sediment biogeochemical cycles: a modelling approach. Ecol Model 221:1687–1701CrossRefGoogle Scholar
  51. Hubas C, Davoult D (2006) Does seasonal proliferation of Enteromorpha sp. affect the annual benthic metabolism of a small macrotidal estuary? (Roscoff Aber Bay, France). Estuar Coast Shelf Sci 70:287–296CrossRefGoogle Scholar
  52. Jesus B, Brotas V, Marani M, Paterson DM (2005) Spatial dynamics of microphytobenthos determined by PAM fluorescence. Estuar Coast Shelf Sci 65:30–42CrossRefGoogle Scholar
  53. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  54. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957CrossRefGoogle Scholar
  55. Kanou K, Sano M, Kohno H (2004) Food habits of fishes on unvegetated tidal mudflats in Tokyo Bay, central Japan. Fish Sci 70:978–987CrossRefGoogle Scholar
  56. Kéfi S, Berlow EL, Wieters EA, Navarrete SA, Petchey OL, Wood SA, Boit A, Joppa LN, Lafferty KD, Williams RJ, Martinez ND, Menge BA, Blanchette CA, Iles AC, Brose U (2012) More than a meal... integrating non-feeding interactions into food webs. Ecol Lett 15:291–300PubMedCrossRefGoogle Scholar
  57. Kraan S (2012) Algal polysaccharides, novel applications and outlook In: Chang C-F (ed) Carbohydrates – comprehensive studies on glycobiology and glycotechnology. INTECH, CroatiaGoogle Scholar
  58. Krumbein WE, Paterson DM, GAE Z (2003) Fossil and recent biofilms. A natural history of life on Earth. Kluwer, DordrechtCrossRefGoogle Scholar
  59. Laland K, Uller T, Feldman M, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J, Wray GA, Hoekstra HE, Futuyama DJ, Lenski RE, Mackay TFC, Schulter D, Strassmann JE (2014) Does evolutionary therory need a rethink? Nature 514:161–164PubMedCrossRefGoogle Scholar
  60. Lawton JH, Jones CG (1995) Linking species and ecosystems: organisms as ecosystem engineers. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman & Hall, London, pp 141–150CrossRefGoogle Scholar
  61. Lee SY, Fong CW, Wu RSS (2001) The effects of seagrass (Zostera japonica) canopy structure on associated fauna: a study using artificial seagrass units and sampling of natural beds. J Exp Mar Biol Ecol 259:23–50PubMedCrossRefGoogle Scholar
  62. Lejart M, Hily C (2011) Differential response of benthic macrofauna to the formation of novel oyster reefs (Crassostrea gigas, Thunberg) on soft and rocky substrate in the intertidal of the Bay of Brest, France. J Sea Res 65:84–93CrossRefGoogle Scholar
  63. Lubarsky HV, Hubas C, Chocholek M, Larson F, Manz W, Paterson DM, Gerbersdorf SU (2010) The stabilisation potential of individual and mixed assemblages of natural bacteria and microalgae. PLoS One 5:e13794PubMedPubMedCentralCrossRefGoogle Scholar
  64. Luckenbach MW (1986) Sediment stability around animal tubes: the roles of hydrodynamic processes and biotic activity. Limnol Oceanogr 31:779–787CrossRefGoogle Scholar
  65. MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats.1. Distribution, abundance and primary production. Estuaries 19:186–201CrossRefGoogle Scholar
  66. Malarkey J, Baas JH, Hoppe JA, Aspden RJ, Parsons DR, Peakall J, Paterson DM, Schindler RJ, Ye L, Lichtman ID, Bass SJ, Davies AG, Manning AJ, Thorne PD (2015) The pervasive role of biological cohesion in bedform development. Nat Commun 6:6257PubMedPubMedCentralCrossRefGoogle Scholar
  67. Manzenrieder H (1983) Retardation of initial erosion under biological effects in sandy tidal flats. Tech University Braunschweig, BrunswickGoogle Scholar
  68. Markov B, Nedkov S (2016) Mapping of erosion regulation ecosystem services. In: Bandrova T, Konecny M (eds) 6th International conference on cartography and GIS. Albena, Bulgaria, pp 97–108Google Scholar
  69. Meadows PS, Meadows A (1991) The geotechnical and geochemical implications of bioturbation in marine sedimentary ecosystems. In: Meadows PS, Meadows A (eds) The environmental impact of burrowing animals and animal burrows. Oxford Science Publications, Oxford, pp 157–181Google Scholar
  70. Meadows PS, Tait J, Hussain SA (1990) Effects of estuarine infauna on sediment stability and particle sedimentation. Hydrobiologia 190:263–266CrossRefGoogle Scholar
  71. Meadows PS, Meadows A, Murray JMH (2012) Biological modifiers of marine benthic seascapes: their role as ecosystem engineers. Geomorphology 157:31–48CrossRefGoogle Scholar
  72. Melville AJ, Connolly RM (2005) Food webs supporting fish over subtropical mudflats are based on transported organic matter not in situ microalgae. Mar Biol 148:363–371CrossRefGoogle Scholar
  73. Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnol Oceanogr 45:1224–1234CrossRefGoogle Scholar
  74. Migné A, Spilmont N, Davoult D (2004) In situ measurements of benthic production during emersion: seasonal variations and annual production in the Bay of Somme (eastern English Channel, France). Cont Shelf Res 24:1437–1449CrossRefGoogle Scholar
  75. Migné A, Spilmont N, Boucher G, Denis L, Hubas C, Janquin MA, Rauch M, Davoult D (2009) Annual budget of benthic production in Mont Saint-Michel Bay considering cloudiness, microphytobenthos migration, and variability of respiration rates with tidal conditions. Cont Shelf Res 29:2280–2285CrossRefGoogle Scholar
  76. Millenium Ecosystem Assessment (2003) Ecosystems and human well-being: a framework for assessment. The Millenium Ecosystem Assessment Series. Island Press, Washington, DCGoogle Scholar
  77. Miller DC, Geider RJ, MacIntyre HL (1996) Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. 2. Role in sediment stability and shallow-water food webs. Estuaries 19:202–212CrossRefGoogle Scholar
  78. Murray JMH, Meadows A, Meadows PS (2002) Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review. Geomorphology 47:15–30CrossRefGoogle Scholar
  79. Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton Univerity Press, Princeton, NJGoogle Scholar
  80. Pakalniete K, Aigars J, Czajkowski M, Strake S, Zawojska E, Hanley N (2017) Understanding the distribution of economic benefits from improving coastal and marine ecosystems. Sci Total Environ 584-585:29–40PubMedCrossRefGoogle Scholar
  81. Passarelli C, Hubas C, Nicolas Segui A, Grange J, Meziane T (2012a) Surface adhesion of microphytobenthic biofilms is enhanced under Hediste diversicolor (O. F. Müller) trophic pressure. J Exp Mar Biol Ecol 438:52–60CrossRefGoogle Scholar
  82. Passarelli C, Olivier F, Paterson DM, Hubas C (2012b) Impacts of biogenic structures on benthic assemblages: microbes, meiofauna, macrofauna and related ecosystem functions. Mar Ecol Prog Ser 465:85–97CrossRefGoogle Scholar
  83. Passarelli C, Olivier F, Paterson DM, Meziane T, Hubas C (2014) Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res 92:92–101CrossRefGoogle Scholar
  84. Paterson DM (1989) Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol Oceanogr 34:223–234CrossRefGoogle Scholar
  85. Paterson DM, Black KS (1999) Water flow, sediment dynamics and benthic biology. Adv Ecol Res 29:155–193CrossRefGoogle Scholar
  86. Paterson DM, Aspden RJ, Visscher PT, Consalvey M, Andres MS, Decho AW, Stolz J, Reid RP (2008) Light-dependant biostabilisation of sediments by stromatolite assemblages. PLoS One 3:e3176PubMedPubMedCentralCrossRefGoogle Scholar
  87. Paterson DM, Fortune I, Aspden RJ, Black KS (2017) Intertidal mudflats: form and function. In: Perillo G, Wolanski E, Cahoon D, Brinson M (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier Academic, AmsterdamGoogle Scholar
  88. Powers SP, Rouhani S, Baker MC, Roman H, Grabowski JH, Scyphers SB, Willis JM, Hester MW (2017) Ecosystem services are lost when faciliation between two ecosystem engineers is compromised by oil. Mar Ecol Prog Ser 576:189–202CrossRefGoogle Scholar
  89. Rabaut M (2009) Lanice conchilega, fisheries and marine conservation: towards an ecosystem approach to marine management. Ghent University, GhentGoogle Scholar
  90. Rees SE, Rodwell LD, Attrill MJ, Austen MC, Mangi SC (2010) The value of marine biodiversity to the leisure and recreation industry and its application to marine spatial planning. Mar Policy 34:868–875CrossRefGoogle Scholar
  91. Reise K (2002) Sediment mediated species interactions in coastal waters. J Sea Res 48:127–141CrossRefGoogle Scholar
  92. Rigolet C, Dubois SF, Thiébaut E (2014) Benthic control freaks: effects of the tubiculous amphipod Haploops nirae on the specific diversity and functional structure of benthic communities. J Sea Res 85:413–427CrossRefGoogle Scholar
  93. Sanders D, Jones CG, Thébault E, Bouma TJ, van der Heide T, van Belzen J, Barot S (2014) Integrating ecosystem engineering and food webs. Oikos 123:513–524CrossRefGoogle Scholar
  94. Sgrò CM, Hoffmann AA (2004) Genetic correlations, tradeoffs and environmental variation. Heredity 93:241–248CrossRefGoogle Scholar
  95. Shields A (1936) Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Technical University Berlin, BerlinGoogle Scholar
  96. Spilmont N, Migné A, Lefebvre A, Artigas LF, Rauch M, Davoult D (2005) Temporal variability of intertidal benthic metabolism under emersed conditions in an exposed sandy beach (Wimereux, eastern English Channel, France). J Sea Res 53:161–167CrossRefGoogle Scholar
  97. Spilmont N, Davoult D, Migné A (2006) Benthic primary production during emersion: in situ measurements and potential primary production in the Seine Estuary (English Channel, France). Mar Pollut Bull 53:49–55PubMedCrossRefGoogle Scholar
  98. Stal LJ (2010) Microphytobenthos as a biogeomorphological force in intertidal sediment stabilization. Ecol Eng 36:236–245CrossRefGoogle Scholar
  99. Summerhayes SA, Bishop MJ, Leigh A, Kelaher BP (2009) Effects of oyster death and shell disarticulation on associated communities of epibiota. J Exp Mar Biol Ecol 379:60–67CrossRefGoogle Scholar
  100. Thomsen MS, Wernberg T, Altieri A, Tuya F, Gulbransen D, McGlathery KJ, Holmer M, Silliman BR (2010) Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr Comp Biol 50:158–175PubMedCrossRefGoogle Scholar
  101. Tolhurst TJ, Consalvey M, Paterson DM (2008) Changes in cohesive sediment particles associated with the growth of a diatom biofilm. Hydrobiologia 596:225–239CrossRefGoogle Scholar
  102. Van Colen C, Thrush SF, Parkes S, Harris R, Woodin SA, Wethey DS, Pilditch CA, Hewitt JE, Lohrer AM, Vincx M (2015) Bottom-up and top-down mechanisms indirectly mediate interactions between benthic biotic ecosystem components. J Sea Res 98:42–48CrossRefGoogle Scholar
  103. Van De Koppel J, Herman PMJ, Thoolen P, Heip CHR (2001) Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology 82:3449–3461CrossRefGoogle Scholar
  104. van der Heide T, van Nes EH, Geerling GW, Smolders AJP, Bouma TJ, van Katwijk MM (2007) Positive feedbacks in seagrass ecosystems: implications for success in conservation and restoration. Ecosystems 10:1311–1322CrossRefGoogle Scholar
  105. Volkenborn N, Reise K (2006) Lugworm exclusion experiment: responses by deposit feeding worms to biogenic habitat transformations. J Exp Mar Biol Ecol 330:169–179CrossRefGoogle Scholar
  106. Volkenborn N, Reise K (2007) Effects of Arenicola marina on polychaete functional diversity revealed by large-scale experimental lugworm exclusion. J Sea Res 57:78–88CrossRefGoogle Scholar
  107. Volkenborn N, Hedtkamp SIC, van Beusekom JEE, Reise K (2007) Effects of bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties and implications for intertidal habitat succession. Estuar Coast Shelf Sci 74:331–343CrossRefGoogle Scholar
  108. Volkenborn N, Robertson DM, Reise K (2009) Sediment destabilizing and stabilizing bio-engineers on tidal flats: cascading effects of experimental exclusion. Helgol Mar Res 63:27–35CrossRefGoogle Scholar
  109. Web of Science (2017) webofknowledge.com. Accessed 21 July 2017
  110. Wethey DS, Woodin SA, Hilbish TJ, Jones SJ, Lima FP, Brannock PM (2011) Response of intertidal populations to climate: effects of extreme events versus long term change. J Exp Mar Biol Ecol 400:132–144CrossRefGoogle Scholar
  111. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. PNAS 95:6578–6583PubMedCrossRefGoogle Scholar
  112. Wilson JB, Agnew DQ (1992) Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336CrossRefGoogle Scholar
  113. Woodin SA (1978) Refuges, disturbance, and community structure: a marine soft-bottom example. Ecology 59:274–284CrossRefGoogle Scholar
  114. Woodin SA, Jackson JBC (1979) Interphyletic competition among marine benthos. Am Zool 19:1029–1043CrossRefGoogle Scholar
  115. Zühlke R (2001) Polychaete tubes create ephemeral community patterns: Lanice conchilega (Pallas, 1766) associations studied over six years. J Sea Res 46:261–272CrossRefGoogle Scholar
  116. Zühlke R, Blome D, van Bernem KH, Dittmann S (1998) Effects of the tube-building polychaete Lanice conchilega (Pallas) on benthic macrofauna and nematodes in an intertidal sandflat. Senckenberg Marit 29:131–138CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Claire Passarelli
    • 1
  • Cédric Hubas
    • 2
  • David M. Paterson
    • 3
  1. 1.University of Essex, School of Biological SciencesColchesterUK
  2. 2.Muséum National d’Histoire Naturelle, UMR BOREA, MNHN-CNRS-UCN-UPMC-IRD-UA, Station Marine de ConcarneauConcarneauFrance
  3. 3.Sediment Ecology Research Group, Scottish Oceans Institute, School of BiologyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations